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Abstract

� This is the student’s version of the lecture notes �

These lecture notes cover the fundamentals of stochastic processes, starting from defining the Lebesgue
integral and progressing through a variety of major theorems such as Itô’s formula, the Martingale Rep-
resentation Theorem, and Girsanov’s Theorem, all proved under strong regularity assumptions.

Following the theoretical groundwork, the notes explore Stochastic Differential Equations (SDE)s,
Forward-Backward SDEs, and the Feynman-Kac formula, discussing these topics without rigorously
treating well-posedness.

The final part of the notes transitions to applications in quantitative finance, introducing the Black-
Scholes model and discussing derivative pricing, risk-neutral valuation, and hedging strategies.

The content on measure theory largely follows Folland [3]. The material leading up to SDEs mainly
follows Zhang [6], with additional details from Durrett [2], Karatzas, and Shreve [4], and Cohen [1].
Subsequently, the concepts pertaining to finance are informed by Björk [5].
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1 Fundamental Concepts

1.1 A Tour in Measure Theory

In this section, we will introduce the fundamentals of measure theory and provide an exposure to the core
theorems.

The main objective of measure theory is to study functions that assign a real value to subsets of a given
set. As a core structural requirement, we aim to understand functions that are additive under disjoint subsets.

In geometry, which is vital for intuition, this notion corresponds to length, area, volume etc. Importantly,
measure theory allows the study of integration in a robust way, allowing powerful limit theorems to hold. In
our context, probability theory is built upon measure theory.

It turns out that not all subsets of a given set can be considered. Vague intuition is that, a set has no
constraints, it is just a collection. And without any requirements, one can construct pathological examples
in mathematics. Banach and Tarski proved the following interesting result in 1924:

Let U; V be arbitrary bounded open sets in Rm form � 3. There exists k 2 N and subsets E1; � � � ; Ek;
F1; � � � ; Fk of Rm such that Ei ’s partition U , Fi ’s partition V and Ei is congurent (translation + rotation +
reflection) to Fi .

Definition 1.1. A collection of subsets F of a set � is called a � -algebra, if

� If fEkg1kD1 2 F , then [kEk 2 F .

� If E 2 F , then Ec 2 F .

For any set�, all subsets 2� and f;; �g (trivial) are � -algebras. Furthermore, intersection of � -algebras
is itself a � -algebra. Therefore, given any collection of subsets A, we define �.A/ as the � -algebra generated
by A.

Exercise 1.2. Show that

(i) ; and � is contained in any � -algebra,

(ii) � -algebra is closed under countable intersections,

(iii) Intersection of arbitrary family of � -algebras is a � -algebra. Relying on this, define the � -algebra
generated by any collection of subsets E , denoted as �.E/.

So, which � -algebra to take? For any topological space, the most important � -algebra is the one gener-
ated by all the open sets. We call it the Borel � -algebra. Roughly speaking, Borel � -algebra contains all the
countable intersections and unions of open sets. It is informative to keep in mind (i) geometric objects with
partitions, (ii) intervals in (real) numbers, (iii) open balls around continuous functions. (i) serves well for an
abstract case, and the discrete nature of it helps the intuition greatly. (ii) is crucial as numbers are, however,
as in every area of mathematics, concepts becomes unimaginably powerful once applied to functions and
(iii) will serve us as a basis in stochastic processes.

Next proposition is the underlying reason why cumulative distribution function characterizes a probabil-
ity distribution. The proof (omitted) relies on the fact that every open set in R is a countable union of open
intervals.

Proposition 1.3. The Borel � -algebra on R is generated by intervals. Any collection of intervals, such as
.a; b/, Œa; b�, .�1; a/, etc. can be used as a generator of the Borel � -algebra.
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Definition 1.4. A measure on .�;F/ is a function � W F ! Œ0;1� such that

� �.;/ D 0

� �.[1
kD1

Ek/ D
P1
kD1 �.Ek/ for any collection of disjoint subsets Ek in F .

We call .�;F ; �/ a measure space.

Example 1.5. Let F D 2�1 for any set �, and take any � W �! Œ0;1�. Then,

�.E/´
X
x2E

�.x/´ sup
n X
x2F

�.x/ W F � E;F finite
o

is a measure on .�;F/. In general, � might be understood as a density. Two special cases are important:

(i) If �.x/ D 1 for all x, it is called counting measure.

(ii) If �.x0/ D 1 for some x0 2 � and 0 otherwise, it is called Dirac measure or point mass.

Next theorem clarifies why probability distributions are characterized by their cumulative distributions.2

Theorem 1.6. Let F W R ! R be any increasing, right continuous function. Then there exists a unique
measure �F on R with �F ..a; b// D F.a/ � F.b/. If G is another such function, we have �F D �G if
and only if F �G is constant.

Note that we can generate a significant amount of measures on R by above theorem. Most important
example is the so called Lebesgue measure m on R, which is the measure associated with F.x/ D x where
m..a; b// D b � a. Some basic properties are as follows,

Theorem 1.7. Let .�;F ; �/ be a measure space.

(Monotonicity) If E � F , then �.E/ � �.F /.

(Subadditivity) �.[kEk/ �
P
k �.Ek/.

(Continuity) If E1 � E2 � � � � , then �.[kEk/ D limk �.Ek/.
If E1 � E2 � � � � and �.E1/ <1 then �.\kEk/ D limk �.Ek/.

Exercise 1.8. (i) Find a sequence Ek such that �.E1/ D1 and continuity from above fails.

(ii) Show that, if �1; �2; � � � are measures on .�;F/, and a1; a2; � � � 2 Œ0;1/, then
P1
kD1 ak�k is a

measure on .�;F/.

(iii) .�;F ; �/ is a measure space. Show that �.E/C �.F / D �.E [ F /C �.E \ F /;8E;F 2 F .

(iv) .�;F ; �/ is a measure space and fix E 2 F . Show that �E .A/´ �.A \E/ is a measure.

We say E 2 F is a null set if �.E/ D 0. If a statement is true for all ! 2 � excluding a null set, then
we say it holds almost surely, or almost everywhere.

Next, we will discuss measurable functions. First, recall that any function f W � ! ƒ induces a
mapping f �1 W 2� ! 2ƒ defined as f �1.E/ D fx 2 X W f .x/ 2 Eg which preserves unions, intersection
and complements. Therefore, if G is a � -algebra for ƒ, then ff �1.E/ W E 2 Bg is a � -algebra for �.

12� denotes all the subsets.
2Probability distribution means �.�/ D 1.
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Definition 1.9. Given two measurable spaces .�;F/, .ƒ;G/, a function f W � ! ƒ is called measurable
if f �1.E/ 2 F for all E 2 G.

Proposition 1.10. If X; Y are topological spaces, any continuous function is measurable when X; Y are
equipped with Borel � -algebras.

In fact, measurable functions are closely related to continuous function but we will not explore this.
As an informative example, note that the function f .x/ D 1 for all x 2 Œ0; 1� n Q and 0 otherwise is a
measurable function. Since m.Q/ D 0, for arbitrary " > 0, one can find a domain with measure 1 � " for
which f is continuous.

Introduce the indicator function or characteristic function as

1fEg.!/´

(
1 if ! 2 E
0 if ! … E

which is measurable iff E is in the � -algebra. Then we have the definition of functions that the integration
is build on.

Definition 1.11. We say � W �! R is simple, if � is measurable and the range is a finite subset of R. The
standard representation of � is

� D

nX
kD1

xk1fEkg; where Ek D �
�1.xk/; range.�/ D fx1; � � � ; xng

We are ready to talk about the integration now. Let .�;F ; �/ be a measure space. First, we define the
integral of a simple function � with the standard representation asZ

�d�´
X
k

xk�.Ek/; and
Z
A

�d�´

Z
�1fAgd�´

Z
�1fAg;8A 2 F (1.1)

Define LC as the space of all measurable positive functions,

LC´
n

all measurable f W �! RC
o

Proposition 1.12. Let �; ' 2 LC be simple functions. Then,

(i) If c > 0, then
R
c� D c

R
�.

(ii)
R
.� C '/ D

R
� C

R
'

(iii) If � � ', then
R
� �

R
'.

(iv) The map A 7!
R
A �d� is a measure.

We now lift the definition of integral to any f 2 LC asZ
fd�´

Z
f ´ sup

� Z
�d� W 0 � � � f; � simple

�
(1.2)

Since all the functions can be decomposed as f D f C � f �3 to negative and positive parts, we can
define integrals if

R
jf jd� <1, which we denote all such functions as L1,

L1´

�
all measurable f W �! R s.t.

Z
jf jd� <1

�
3f C D max.0; f / and f � D max.0;�f /. Also,

R
f ´

R
f C �

R
f �.
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Exercise 1.13. Show that,

(i) when f is a simple function, (1.2) agrees with (1.1).

(ii) c
R
f D

R
cf , and if f � g then

R
f �

R
g.

Example 1.14 (Summation). Let � D N, F all subsets of N, and �.E/ D jEj. ThenZ
fd� D

X
n�0

f .n/

Example 1.15 (Lebesgue Integral). Let � D Œa; b�, B be the Borel � -algebra and m Lebesgue measure.
Then

R
fdm D

R b
a f .x/dx if f has discontinuities only on a set of measure 0.

Recall the function f that is equal to 1 on Œ0; 1� except Q. We simply identify this function same as
identically 1, and integral is well defined to be 1 too. Recall that we typically characterize Rimeann integral
on continuous functions, whereas now we have a larger class of functions for which in particular allows us
to ’ignore’ zero measure events.

Example 1.16 (Probability). Let .�;F ;P / be a probability space. That is, P .�/ D 1. Then,

EX ´
1

P .�/

Z
�

XdP

for any random variable (i.e. measurable function) X .

We now list three basic convergence theorems, which forms the backbone of the theory. These conver-
gence theorems with measurable functions allows one to carry out analysis, whereas working on continuous
functions requires verifications case by case. We will omit the proofs for the sake of this course.

Theorem 1.17 (Monotone Convergence Theorem). If fk 2 LC and fk � fkC1 for all 1 � k, then

lim
k!1

Z
fkd� D

Z
lim
k!1

fkd�

Theorem 1.18 (Fatou’s Lemma). If fk 2 LC for all 1 � k,Z
limfkd� � lim

Z
fkd�

Theorem 1.19 (Dominated Convergence Theorem). Suppose fk 2 L1 and

� limk fk D f almost everwhere

� there exists g 2 L1 such that jfkj � g for all k,

then
lim
k

Z
fkd� D

Z
fd�

Lastly, we will see two more important theorems, simplified considerably.

Theorem 1.20 (Fubini-Tonelli). If f 2 LC.� �ƒ/ (Tonelli) or f 2 L1.� �ƒ/ (Fubini), thenZ
��ƒ

f .x; y/d.� � �/.x; y/ D

Z
�

� Z
ƒ

f .x; y/d�.y/
�
d�.x/ D

Z
ƒ

� Z
�

f .x; y/d�.x/
�
d�.y/

where � � � is the product measure on � �ƒ.
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Recall Example 1.14, and Fubini-Tonelli allows us to interchange summations.

Theorem 1.21 (Radon-Nikodym). Let �; � be � -finite4 measures on .�;F/ where �.E/ D 0 if �.E/ D 0
(denoted as � � �). Then there exists a unique (almost everywhere) integrable function f W � ! R such
that

d� D fd�; that is, �.E/ D
Z
E

fd�

1.2 Basics of Probability Theory

In probability theory, measures (with total mass 1) are typically denoted by P , and the integral is denoted
by E or EP . Measurable space is typically called the event space, and we typically do not model it except
for the sake of introductory examples. Measurable functions � ! R are called random variables (RVs),
denoted as X; Y;Z etc. We always implicitly consider the Borel sigma algebra on R. Moreover, we take the
change of variable formula as granted:

EŒX� D

Z
�

XdP D

Z
R
xd�X .x/

where �X .A/ D P .X 2 A/ is the law of X .

Definition 1.22. Let .�;F ;P / be a probability space, and X be a random variable. We denote the sigma
algebra generated by X as �.X/´ fX�1.A/ W A 2 B.R/g.

Example 1.23. Consider the event space as � D f1; 2; 3; 4; 5; 6g, F D 2� and let X D 1 on 6 and 0
otherwise. Then �.X/ D f;; 6; f1; 2; 3; 4; 5g; �g.

As X is measurable, �.X/ � F but it might be strict as above. Also, if X is constant, �.X/ D f;; �g.
Roughly speaking, �.X/ characterizes how much information X yields. Note that, if X takes finitely many
values, then �.X/ is generated by finitely many sets.

In this course, we will work with square integrable random variables (Hilbert space),

L2´

�
all RVs X W �! R s.t. EjX j2 <1

�
For X; Y 2 L2, introduce

Var.X/´ E
h�
X � EŒX�

�2i
D EŒjX j2� � jEŒX�j2

Cov.X; Y /´ E
h�
X � EŒX�

��
Y � EŒY �

�i
D EŒXY � � EŒX�EŒY �

�.X; Y /´ �X;Y ´
Cov.X; Y /
�X�Y

; ��´
p

Var.�/

For random vectors X D .X1; � � � ; Xd /
> W � ! Rd , we similarly define �X .A/´ P .X 2 A/ for A

in Borel � -algebra of Rd and introduce the cumulative distribution function (cdf) as

FX .x/´ P .X1 � x1; : : : ; Xd � xd /; x 2 Rd

We say random variables X1; : : : ; Xn are independent by the following equivalent definitions

(i)
F.X1;:::;Xn/.x1; : : : ; xn/ D FX1.x1/ � � �FXn.xn/

4That is, � is a countable union of sets with finite measures.
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(ii) E
�Qn

iD1 gi .Xi /
�
D
Qn
iD1E

�
gi .Xi /

�
for any bounded scalar Borel measurable functions g1; : : : ; gn.

Remark 1.24. Independent RVsX1; : : : ; Xn induces a product measure on�n. Let n D 2 and recall Fubini-
Tonelli Theorem 1.20 with f .x; y/ D xy. We get that

EŒXY � D

Z
R�R

xy.d�X � d�Y / D

Z
R

�Z
R
xyd�X

�
d�Y D

Z
R
xd�X

Z
R
yd�Y D EŒX�EŒY �

Also, if EŒXY � D EŒX�EŒY �, or equivalently, Cov.X; Y / D 0, we say X and Y are uncorrelated.

Definition 1.25. Recall the Radon-Nikodym Theorem 1.21. Suppose the law of X satisfies �X � m. Then
the Radon-Nikodym derivative fX is called the density (pdf) of X . In particular,

�X ..a; b// D

Z
.a;b/

fdm D
Z b

a

f .x/dx

Moreover, existence of density is equivalent to FX being absolutely continuous. In this case, FX is almost
everywhere differentiable and @xFX .x/ D f .x/.

Definition 1.26. Suppose fXngn�1 and X are random variables. We say Xn ! X

� almost surely if P .limn!1Xn D X/ D 1,

� in probability, if limn!1 P .jXn �X j > "/ D 0,

� in distribution, if limn!1 FXn.x/ D FX .x/ for all x where FX is continuous at x.

� in Lp, if limn!1E
�
jXn �X jp� D 0 for some p � 1,

� weakly in L2, if we are considering Xn; X 2 L2, and limn!1EŒXn�� D EŒX��, 8� 2 L2.

Note that limn!1
R
fd�Xn D

R
fd�X for all bounded, continuous f is equivalent to convergence in

distribution.

Remark 1.27. In this remark, we will try to clarify some differences between these convergences. There are
a lot of connections to explore, which we are not aiming to do here. Suppose � D Œ0; 1� with Lebesgue
measure m, and consider the following examples:
(i) Xn.!/ D n1fŒ0;1=n�g,
(ii) Xn.!/ D 1fŒi=2k ;.iC1/=2k�g where n D 2k C i with 0 � i < 2k ,

(iii) X2n.!/ D !;X2n�1.!/ D 1 � ! , and
(iv) Xn is i.i.d. sequence of uniform distributions with mean 0 and variance 1.
� Now, (i) converges to 0 almost surely (a.s.), however, does not converge in L1. On the other hand, (ii)

converges in L1 whereas does not converge for any x 2 Œ0; 1�.
� (iii) obviously converges in distribution to the uniform distribution on Œ0; 1�. However, it does not

converge in probability.
� (iv) converges to 0 weakly in L2, whereas it trivially converges to uniform measure in distribution. To

see the weak convergence in L2, note that fXng is an orthonormal sequence. Given any � 2 L2, we can
write

� D

1X
nD1

anX
n
C �>; where an´ EŒ�Xn�

by Bessel’s Inequality (1828),
P1
nD1 janj

2 � EŒj�j2� < 1. In particular, an ! 0 and this is exactly what
we need to conclude Xn converges weakly in L2.
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Exercise 1.28. Prove that, if Xn ! X in L2, then Xn ! X in probability.
[Hint: Chebyshev’s inequality.]

We left reader to recall cdf and pdf of some common distributions:
(i) Bernoulli, (ii) Binomial, (iii) Geometric, (iv) Uniform, (v) Exponential

We say X have normal distribution, denoted as X � N .�; �2/, if it has the pdf

f .x/ D
1

p
2��2

e
�
.x��/2

2�2

Check that EŒX� D � and VarŒX� D �2. Moreover, aX C b � N .� C b; a2�2/ and if Y � N .�; �2/
independent of X , then X C Y � N .� C �; �2 C �2/. We say Z have standard normal distribution if
Z � N .0; 1/.

We say X D .X1; : : : ; Xn/
> has a multivariate Gaussian distribution if any linear combination of

X1; : : : ; Xn has normal distribution. In particular, if X1; : : : ; Xn are independent and have normal dis-
tribution, then X have multivariate Gaussian distribution. Also, if X1; : : : ; Xn have Gaussian distribution,
then they are independent if and only if they are pairwise uncorrelated. We say that Z D .Z1; : : : ; Zn/ has
a standard Gaussian distribution if Z1; : : : ; Zn has independent standard normal distribution. Equivalently,
we may define X D .X1; : : : ; Xn/

> has multivariate Gaussian distribution if there exists m � n, a vector
� D .�1 : : : ; �n/ and a n �m matrix A such that X D �C AZ where Z D .Z1; : : : ; Zm/> has standard
Gaussian distribution. We write X � N .�;†/ where

†i;j D Cov.Xi ; Xj / D E
�
.Xi � �i /.Xj � �j /

�
D A>i E

�
ZZT

�
Aj D A

>
i Aj

that is, † D A>A. If the covariance matrix † is invertible, then the density of X � N .�;†/ is given by

fX .x/ D
1p

.2�/nj†j
exp

�
�
1
2
.x � �/>†�1.x � �/

�
The crucial reason why the normal distribution is fundamental is given by the following theorem.

Theorem 1.29 (Central Limit Theorem). Suppose fXngn�1 are independent and identically distributed
(i.i.d.) with EŒXn� D � and Var.Xn/ D �2. Denote the sample mean NXn ´ 1

n

Pn
iD1Xi and Zn ´

p
n
NXn��
�

. Then, Zn converges to N .0; 1/ in distribution.

Let us also quickly recall the strong Law of Large Numbers (SLLN).

Theorem 1.30 (Strong Law of Large Numbers). Let X1; X2; � � � be pairwise independent identically
distributed random variables, where EX1 exists. 5. Then the sample mean NXn ´ 1

n

Pn
iD1Xi converges to

EX1 almost surely.

1.3 Conditional Expectation

We have an important result which characterizes the notion of measurability with respect to the � -algebra
of a measurable function:

Theorem 1.31 (Doob-Dynkin). LetX; Y be random variables. Then Y is measurable with respect to �.X/
if and only if Y D h.X/ for some (Borel) measurable h W R! R.

Definition 1.32 (Conditional Expectation). Let .�;F ;P / be a probability space, and X 2 L1. Consider a
sub � -algebra H � F . We call EŒX jH� 2 L1 the conditional expectation of X given H, satisfying

5That is, EX�1 <1, where X�1 D �min.0; X1/
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� EŒX jH� measurable with respect to H, and

�
R
H EŒX jH�dP D

R
H XdP for all H 2 H.

Furthermore, if Y is an another random variable, we denote EŒX jY �´ EŒX j�.Y /�.

Remark 1.33.
(i) By Doob-Dynkin lemma, EŒX jY � D h.Y / for some measurable h.
(ii) Equivalent condition to second condition is

EŒYEŒX jH�� D EŒYX�

for all Y measurable with respect to H. If H D �.Z/ for some Z, then we can further write Y D g.Z/ and
consider all Borel measurable functions g by Doob-Dynkin lemma.

(iii) Conditional expectation exists and unique by the Radon-Nikodym theorem. Namely, �.H/ ´R
H XdP is a measure for .�;H/, which satisfies �� PjH.

(iv) X itself satisfies the second bullet. However, may not be H measurable.

Example 1.34. If H D f;; �g, then EŒX jH� D EŒX�.

Example 1.35. If X is independent of H, that is,

P .fX 2 Bg \H/ D P .X 2 B/P .H/ for all B 2 B.R/;H 2 H

then EŒX jH� D EŒX�. To see this, constanct functions are always measurable. Hence, take H 2 H, and
then Z

H

XdP D EŒX1fHg� D EŒX�EŒ1fHg� D
Z
H

EŒX jH�dP

Example 1.36. If X is measurable with respect to H, then EŒX jH� D X .

Example 1.37. Suppose �1; �2; � � � is a partition of �, where P .�k/ > 0 for all 1 � k. Let H D
�.�1; �2; � � � /. Then we claim

EŒX jH� D
EŒX1fX2�kg�

P .�k/
D

1

P .�k/

Z
�k

XdP on �k

To see this, note that EŒX jH� is constant on each �k . Therefore, it is measurable with respect to H. Then
we need to check the second condition, and it suffices to check for H D �k , which is trivial.

Remark 1.38. As it follows from the example above, if Y is a random variable with discrete values, then

EŒX jY D y� D
EŒX1fYDyg�
P .Y D y/

Example 1.39. Consider two independent fair coin flips X1, X2. Then

EŒX1jX1 CX2� D

8̂̂̂<̂
ˆ̂:

EŒX11fX1CX2D0g�
P.X1CX2D0/

if X1 CX2 D 0
EŒX11fX1CX2D1g�

P.X1CX2D1/
if X1 CX2 D 1

EŒX11fX1CX2D2g�
P.X1CX2D2/

if X1 CX2 D 2

D
X1 CX2

2

Intuitively, if X1 C X2 is 0 or 1, we know the value of X1. If the sum is 1, we have no information about
X1.
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Example 1.40. Consider X; Y with joint density function f .x; y/. That is,

P ..X; Y / 2 B/ D

Z
B

f .x; y/dxdy for B 2 B.R2/

If EŒjg.X/j� <1, then

EŒg.X/jY � D h.Y /; where h.y/ D
1R

f .x; y/dx

Z
g.x/f .x; y/dx

To verify this, since h itself is a measurable function, h.Y / is measurable with respect to �.Y /. Now, let
A D fY 2 Bg for some B 2 B.R/. Then,Z

A

h.Y /dP D

Z
h.Y /1fY2BgdP D

Z
R2
h.y/1fy2Bgf .x; y/dxdy D

D

Z
R
h.y/1fy2Bg

� Z
R
f .x; y/dx

�
dy D

Z
R2

1fy2Bgg.x/f .x; y/dy D
Z
A

g.X/dP

Proposition 1.41 (Properties of Conditional Expectation).

(Linear) EŒaX C Y jH� D aEŒX jH�C EŒY jH�.

(Monotone) If X � Y (almost surely), then EŒX jH� � EŒY jH�.

(Jensen’s inequality) If � is convex, EjX j;EŒj�.X/j� <1, then �.EŒX jH�/ � EŒ�.X/jH�.

(Tower property) If H � G, then EŒEŒX jH�jG� D EŒEŒX jG�jH� D EŒX jH�.

� If X 2 H, EjY j <1, EjXY j <1, then EŒXY jH� D XEŒY jH�.

Remark 1.42. Let’s note some particular cases. If �.x/ D x2, then .EŒX jH�/2 � EŒX2jH�. Since by taking
H D f;; �g, we also conclude .EŒX�/2 � EŒX2�. By the same choice of H, EŒEŒX jG�� D EŒX�.

Example 1.43 (Random walk). Let �k be i.i.d. random variables with mean �. Define Zn ´
Pn
kD1 �k .

Then,
EŒZnC1j�1; : : : ; �n� D EŒZn C �nC1j�1; � � � ; �n� D Zn C �

1.4 Stochastic Processes

We now introduce the notion of filtrations, to accomodate stochastic processes.

Definition 1.44 (Filtration). Let I be either N or RC. We say F D fFngn2I is a filtration if Fk � Fn
whenever k � n.

Stochastic process is a collection of random variables, indexed by an ordered set I. We will work in
continuous time setting with I D Œ0; T �, and say that stochastic process X is a mapping Œ0; T � � � ! R.
Instead of viewing a stochastic process as fXt W 0 � t � T g, it is also typical to view it as family of paths
fX�.!/; ! 2 �g.

Example 1.45. Typically, filtration is generated by a stochastic process. LetX be a stochastic process. Then

FX ´ fFXt gt2Œ0;T �; FXt ´ �.Xs W s � t /

is the filtration generated by X .

Definition 1.46 (Adaptedness). We say a stochastic process X is adapted to the filtration F D fFtgt�0 if
Xt is Ft measurable.

11



Remark 1.47.

(i) X is always adapted to its own filtration FX . Recall the random walk Zn D
Pn
kD1 �k . Here, Z is

adapted to the filtration formed by Fn D �.�1; : : : ; �n/.

(ii) We are simplifying the discussion here by considering adapted processes. In fact, one needs to con-
sider progressively measurable processes. We call a processX progressively measurable, if restriction
of X onto Œ0; t � is B.Œ0; t �/ � Ft -measurable for all t . Similarly, we also omit the discussion around
what it means for two process to be equal.

Theorem 1.48 (Kolmogorov’s Extension). Let �t1;:::;tn be a family of distributions on Rn satisfying

�t1;:::;tn.A1� � � ��Ai�1�R�AiC1� � � ��An/ D �t1;:::;ti�1;tiC1;:::;tn.A1� � � ��Ai�1�AiC1� � � ��An/

for all i and Ai Borel measurable subsets of R. Then, there exists .�;F ;P / and a stochastic process X
where joint distribution of .Xt1 ; : : : ; Xtn/ is given by �t1;:::;tn .

Theorem 1.49 (Kolmogorov’s Continuity). SupposeX is a stochastic process where there exists ˛; ˇ; C >

0 such that
E
�
jXt;sj

˛
�
� C jt � sj1Cˇ ; 8s; t 2 Œ0; T � where Xt;s ´ Xs �Xt

Then, for any  2 .0; ˇ=˛/, X�.!/ is  -Hölder continuous almost surely.6

Definition 1.50 (Stopping time). We say � W � ! Œ0; T � is a F -stopping time if f� � tg 2 Ft for all
t 2 Œ0; T �. Moreover, we introduce the � -field corresponding to the stopping time � as

F� ´
n
A � � W A \ f� � tg 2 Ft ; 80 � t � T

o
Intuitively, being measurable with respect to F� implies that the function is determined by .�; XŒ0;��/.

Lemma 1.51. Suppose A � Rd is closed. Then, � D infft > 0 W Xt 2 Ag is a FX stopping time.

In case the filtration is generated by a stochastic process X , which is typically the case, � is a stopping
time means we can determine if ’� ringed before time t ’ by knowing the path of X from 0 to t (denoted
typically as XŒ0;t�).

1.5 Martingales

Now, we are ready to give the definition of martingales. These are, in a rough sense, processes that do not
drift deterministically.

Definition 1.52 (Martingale). Let .�;F ;F ;P / be a filtered probability space. We say a stochastic process
Mt is a .F ;P /-martingale if

� M is adapted to F .

� EŒjMt j� <1 for all t .

� EŒMt jFs� DMs for all s < t .

Exercise 1.53. Show that if Mt is a martingale, EŒMt � D EŒM0�. In the discrete case, we assume
EŒMnC1jFn� DMn. Show that EŒMnCkjFn� DMn for any 1 � k.

6To be more precise, one needs to say there exists a modification of X that is  -Hölder continuous almost surely.
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Next, we define the sub and super martingales. Roughly, increasing and decreasing processes, similar to
the definition of martingale.

Definition 1.54. We say a stochastic process Mt is a .F ;P /-submartingale (supermartingale) if

� M is adapted to F .

� EjMt j <1 for all t .

� EŒMt jFs� � .�/Ms for all s < t .

We can construct martingales from a given process. We will handle some particular cases, and for the
sake of examples, we will consider discrete time.

Example 1.55 (Asymmetric simple random walk). Let �i be 1 with probability p and �1 with probability
q D 1 � p. Then,

EŒZnC1jFXn � D Zn C p � q; where Zn´

nX
kD1

�k

hence if p � q > 0, Zn is a submartingale, and else it is a supermartingale.

Exercise 1.56. Show that Mn´ Zn C .p � q/n is a martingale.

Exercise 1.57 (Random walk). Suppose �k’s are i.i.d. with mean 0 and variance �2. Then Zn D
Pn
kD1 �k

and Z2n � n�
2 are both martingales.

Example 1.58. OMn´ .q=p/Sn is a martingale. It is obviously adapted to the filtration FXn . Next,

EjMnj � .q=p/
n
C .q=p/�n <1

and
EŒMnC1jFXn � D EŒ.q=p/Sn.q=p/XnC1 jFXn � DMn

h
.q=p/1p C .q=p/�1q

i
DMn

Let us note further properties of martingales.

Theorem 1.59.

� If Mn is a martingale, and � a convex function where Ej�.Mn/j < 1, then �.Mn/ is a submartin-
gale. In particular, if EjMnj

2 <1, then M 2
n is a submartingale.

� If Mn is a submartingale, and � is non-decreasing convex function where Ej�.Mn/j < 1, then
�.Mn/ is a submartingale.

� If Mn is a martingale where EjMnj
2 <1, then for any 0 � ` � k � m � n,

EŒ.Mn �Mm/Mk� D 0 and EŒ.Mn �Mm/.Mk �M`/� D 0

� If Mn is a martingale where EjMnj
2 <1, then

M 2
n �

nX
kD1

EŒ.Mk �Mk�1/
2
jFk�1�

is a martingale.

Proof. Exercise.
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1.6 Markov Processes

Suppose X is F D fFtgt�0 adapted process. We say X is a Markov process if, for any 0 � s < t � T and
bounded Borel measurable ', it holds

E
�
'.Xt /jFs

�
D E

�
'.Xt /jXs

�
a.s.

Roughly, this means fXt W t � sg and fXt W t � sg are independent given Xs . By Doob-Dynkin’s Lemma
1.31, EŒ'.Xt /jXs� D  .Xs/ for some Borel measurable  .

Moreover, we say X is strong Markov process if, for any two stopping time �; Q� satisfying � � Q� ,

E
�
'.XQ� /jF�

�
D E

�
'.XQ� /j�.�;X� /

�
a.s.

In this case, E
�
'.XQ� /j�.�;X� /

�
D  .�;X� /.

To see the independence, let B 2 F and A 2 F� and observe that,

P
�
fXQ� 2 Bg \ Aj�.�;X� /

�
DW E

�
1fX Q�2Bg1fAgj�.�;X� /

�
D E

�
EŒ1fX Q�2BgjF� �1fAgj�.�;X� /

�
D E

�
1fX Q�2Bgj�.�;X� /

�
E
�
1fAgj�.�;X� /

�
´ P

�
1fX Q�2Bgj�.�;X� /

�
P
�
1fAgj�.�;X� /

�
Notable Results and Dates

� Borel � -algebra (1898) – Émile Borel

� Lebesgue Integration (1902) – Henri Lebesgue

� Dominated Convergence Theorem (1904) – Henri Lebesgue

� Monotone Convergence Theorem (1905) – Henri Lebesgue

� Fubini-Tonelli Theorem (1907) – Guido Fubini, Leonida Tonelli

� Fatou’s Lemma (1906) – Pierre Fatou

� Central Limit Theorem (1920s) – Aleksandr Lyapunov, Jarl Waldemar Lindeberg, Paul Lévy

� Banach-Tarski Paradox (1924) – Stefan Banach, Alfred Tarski

� Strong Law of Large Numbers (1929) – Andrey Kolmogorov

� Radon-Nikodym Theorem (1930) – Johann Radon, Otto Nikodym

� Kolmogorov Extension Theorem (1933) – Andrey Kolmogorov

� Kolmogorov Continuity Theorem (1933) – Andrey Kolmogorov

� Doob-Dynkin Lemma (1950s) – Joseph L. Doob, Eugene Dynkin

� Doob’s Martingale Convergence Theorem (1953) – Joseph L. Doob
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2 Brownian Motion

As it is the most studied object in mathematics, and plays a crucial role in every part of science, we now
define and study some basic properties of the Brownian motion.

Definition 2.1 (Brownian Motion). We say B is a (standard) Brownian motion if

� B0 D 0

� For any t1 < t2 < � � � < tn, Bt1 � Bt0 ; � � � ; Btn � Btn�1 are independent.

� Bt � Bs � N .0; t � s/, that is normally distributed zero mean, t � s variance for all s < t .

By Kolmogorov Extension theorem 1.48, we know that Brownian motion exists. Moreover, by Kol-
mogorov’s Continuity Theorem 1.49, we have the following result:

Proposition 2.2. For any 0 < " < 1=2, standard Brownian motion B is "-Hölder continuous almost surely.
In particular, B is continuous.

Brownian motion is a Markov process, and

EŒBt jFBs � D EŒBt j�.Bs/� D EŒBt � Bsj�.Bs/�C Bs D Bs

hence a martingale with respect to its own filtration.7 Note that for any 0 D t0 < t1 < � � � < tn,

.Bt1 � Bt0 ; : : : ; Btn � Btn�1/

are independent and distributed normally. Hence, it is a Gaussian distribution. As we can write

.Bt1 ; : : : ; Btn/ D

0BBB@
1 0 0 � � � 0

1 1 0 � � � 0
:::

:::
:::

:::

1 1 1 � � � 1

1CCCA
0B@ Bt1 � Bt0

:::

Btn � Btn�1

1CA
which is then obvious that .Bt1 ; : : : ; Btn/ has Gaussian distribution. Such processes with finite distribu-
tions being Gaussian distribution are called Gaussian processes. We then have an equivalent definition of
Brownian motion:

Definition 2.3. We say Bt is a (standard) Brownian motion if

� Bt is a Gaussian process,

� For any t < s, EŒBt � D 0 and EŒBtBs� D t ,

Proposition 2.4. Suppose B is a Brownian motion. Then,

(Translation Invariance) for any s > 0, the process Bst ´ BsCt � Bs ,

(Scale Invariance) for any c > 0, OBct ´
1p
c
Bct

(Time Invariance) QBt ´ tB1=t ,

are all Brownian motions.
7We do not need to use Markov property.
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Exercise 2.5. Prove Proposition 2.4 using the definition 2.3.

Theorem 2.6 (Donsker’s Invariance). Let �1; �2; : : : be i.i.d. random variables with expected 0 and vari-
ance �2. Define

OZnt ´
1
p
n�2

�
Zbntc C .nt � bntc/�bntcC1

�
; Zn´

nX
iD1

�i

Then, OZnt converges in distribution to the standard Brownian motion.

Note that when t D 1, this is essentially the CLT. Importantly, we now have a very easy method to
construct approximate Brownian motions.

Figure 1: Visual convergence of random walk to Brownian motion. See the Functional CLT 2.6.

Let us discuss an important observation about the � -algebra FC0 ´ \">0FB" , called germ field, which
represents limits of functions on the paths fBs W 0 � s � "g. Consider a ' which is measurable with respect
to FC0 . In particular, it is measurable with respect to FB" for some small " > 0. Then, by Doob-Dynkin
Lemma,

'.!/ D h.BŒ0;"�.!//

for some measurable h. Here Œ0;"� represents the path. However, since it has to be measurable with respect
to s < ", it most hold that

h
�
BŒ0;s�.!/Cs B.s;"�.!/

�
D h

�
BŒ0;s�. Q!/Cs B.s;"�. Q!/

�
; whenever BŒ0;s�.!/ D BŒ0;s�. Q!/

Otherwise, it would contradict with ' 2 FBs . That is, h is in fact independent of B.s;"� and one can well
define

' D h.BŒ0;s�/
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Because s is arbitrary, only lims!0C Bs might matter, if it was not by continuity equal to 0. We deduce that

' D h.0/

and hence a constant. To sum up, we have shown that, if ' 2 FC0 , then it is a constant. This yields an
important result:

Theorem 2.7 (Blumenthal’s 0-1 Law). Let A 2 FC0 . Then either P .A/ D 1 or P .A/ D 0. In other words,
FC0 is almost the trivial � -algebra.

Altought at a first glance the result seems to carry only a little information, one notices that it yields
important informations about the local behaviour of the process. We now explore some immediate conse-
quences.

Theorem 2.8. Let � D infft � 0 W Bt > 0g, then P .� D 0/ D 1.

As the Brownian motion is symmetric and continuous, immediate follow up result is:

Theorem 2.9. If � D infft > 0 W Bt D 0g, then P .� D 0/ D 1.

In particular, Bt has infinitely many 0’s in Œ0; "� for arbitrary " > 0 almost surely. One can continue to
study local behaviour, but we only state one important result as a remark and move on.

Remark 2.10. Law of Iterated Logarithms:

lim
ı!0C

BtCı � Btp
2ı log log.1=ı/

D 1; and lim
ı!0C

BtCı � Btp
2ı log log.1=ı/

D �1

In particular, B is not 1
2

-Hölder continuous and hence nowhere differentiable too.

Next, we will use the symmetry of Brownian motion to show the so called reflection principle. It is an
important result to deduce facts about the supremum of the Brownian motion. In particular for finance, this
is used for pricing Barrier options.

Theorem 2.11 (Reflection Principle).

P
�

sup
0�s�t

Bs � a
�
D 2P

�
Bt � a

�
Before continuing to define the integrals with respect to the Brownian motion, we first study the total

variation and quadratic variation. Let � WD 0 D t0 < t1 < � � � < tn D T be a partition of Œ0; T � and set
j�j ´ maxi ti � ti�1. Then, we define the total variation of a process X in 0 � a < b � T as

b_
a

.X/´ sup
�

nX
iD1

jXti jba
�Xti�1jba

j; where t jba ´ a _ t ^ b

Furthermore, we define the quadratic variation of X , a process in Rd�d as

hXit ´ lim
j�j!0

nX
iD1

�
Xti jt �Xti�1jt

��
Xti jt �Xti�1jt

�T
if this limit exists in the sense of convergence in probability. Note that, we do not define in a pathwise
manner, or say for each ! 2 �. Next, we compute the quadratic variation of the Brownian motion:
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Proposition 2.12. Suppose B; QB are two independent standard Brownian motions. Then,

lim
j�j!0

E

�� nX
iD1

�
Bti jt�Bti�1jt

�2
�t
�2�
D 0 and lim

j�j!0
E

�� nX
iD1

�
Bti jt�Bti�1jt

��
QBti jt�

QBti�1jt
�T �2�

D 0

Consequently, if B is a d -dimensional standard Brownian motion8, then hBit D tId where Id is the d -
dimensional identity matrix.

Corollary 2.13.
Wb
a.B/ D1 almost surely.

Notable Results and Dates

� Brownian Motion (1827) – Robert Brown

� Brownian Motion (1900) – Louis Bachelier

� Brownian Motion (1905) – Albert Einstein, Marian Smoluchowski

� Wiener Process (1923) – Norbert Wiener

� Levy Processes (1930s) – Paul Lévy

� Doob’s Stopping Time Theorem (1953) – Joseph L. Doob

� Donsker’s Invariance Principle (1951) – Monroe D. Donsker

8That is, each component is an independent standard Brownian motion.
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3 Stochastic Calculus

Fix a filtered probability space .�;F ;F ;P / together with F -Brownian motion.9 In this section, we will
formalize the meaning of

R
�dBt and introduce the Itô’s formula. First, we need to endow our space of

processes with L2 norm, given as

kXk22´ E
h Z T

0

jXt j
2dt

i
which is then a complete metric space. 10 Recall that we defined the Lebesgue integral with simple functions,
which were essentially piecewise constant functions. Similarly, we will first define the stochastic integral
for simple processes which are F -adapted processes that are piecewise constant in time. That is, � is a
simple process if �t 2 Ft and there exists a partition 0 D t0 < � � � < tn D T for which �t D �ti for all
t 2 Œti ; tiC1/. Now, define the stochastic integral asZ t

0

�sdBs ´

nX
iD1

�ti�1.Bti jt � Bti�1jt /; 80 � t � T

Lemma 3.1. Suppose � is a simple process with k�k2 <1. Denote Mt ´
R t
0 �sdBs . Then,

(i) M is an F -martingale. In particular EŒMt � D 0.

(ii) kMk2 <1 and OMt ´M 2
t �

R t
0 j�sj

2ds is a martingale. In particular, we have the Itô isometry:

E
�
jMt j

2
�
D E

h Z t

0

j�sj
2ds

i
(3.1)

(iii) M is continuous almost surely.

We will omit the proof of the next two lemmas for this course. First one is a crucial estimate that allows
us to keep the stochastic integrals staying in L2 space. Second one states that simple processes are dense in
L2 and hence allows us to extend the stochastic integral from simple processes to L2 processes.

Lemma 3.2 (Doob’s Maximum Inequality). Suppose � is a simple process with k�k2 < 1 and let
Mt ´

R t
0 �sdBs . Then,

E
�
jMT j

2
�
� E

�
sup

0�t�T

jMt j
2
�
� 4E

�
jMT j

2
�

Lemma 3.3. For any process � with k�k2 < 1, there exists a sequence of simple processes �n with
k�nk2 <1 such that k� � �nk2 ! 0.

Let us remark that, for � continuous and bounded, it is easy to construct an approximating simple
processes as

�nt ´

nX
iD1

�ti�11fŒti�1;ti /g; where ti ´ i
T

n
; i D 0; � � � ; n

Finally, we collected all the results needed to introduce the stochastic integral for any L2 process � .
Introduce M n corresponding to �n, by Doob’s maximum inequality and Itô isometry,

E
�

sup
0�t�T

jM n
t �M

m
t j
2
�
� 4E

hˇ̌̌ Z T

0

.�nt � �
m
t /dBt

ˇ̌̌2i
D 4E

h Z T

0

j�nt � �
m
t j
2ds

i
D 4k�n � �mk2

9We call B an F -Brownian motion, if B is adapted to the filtration F and .Bt � Bs/ is independent of Fs .
10In fact, it can be viewed as a closed subspace of L2.Œ0; T � � �/, but we will not discuss much. See Karatsaz&Shreve for a

rigorous construction of stochastic integrals.
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and since �n approximates � , k�n � �mk2 ! 0 as m; n ! 1. Since the space is complete, Cauchy
sequence converges to some limitM . If Q�n was another approximating sequence, by the similar observation,

E
�

sup
0�t�T

jM n
t �

QM n
t j
2
�
� 4k�n � Q�nk2 ! 0

and hence the limit is independent of the approximating sequence. Therefore, we defineZ t

0

�sdBs ´ lim
n!1

Z t

0

�ns dBs where the convergence is in the sense:

lim
n!1

E
h

sup
0�t�T

ˇ̌̌ Z t

0

�sdBs �

Z t

0

�ns dBs

ˇ̌̌2i
D 0

Remark 3.4. (i): Note that the convergence is not in a pathwise manner. That is, we cannot determine� R t
0 �sdBs

�
.!/.

(ii): One can further extend the integrals to locally L2 processes � , i.e. without requiring finite expecta-
tions, by using stopping times. In this case, Mt ´

R t
0 �sdBs is a local martingale.

The following theorem holds due to the uniform convergence that we have in the definition of the
stochastic integral.

Theorem 3.5. Suppose � is an L2 process, i.e. k�k2 <1. DenoteMt ´
R t
0 �dBs . Then all the results in

Lemma 3.1 holds true.

3.1 Itô’s Formula

We will prove the Itô’s formula, which can be viewed as the fundamental theorem of stochastic calculus.
First, let us observe why the usual chain rule type of result does not work in the case of stochastic analysis.

Example 3.6. Let B be the standard Brownian motion. Then,

jBt j
2
� t D 2

Z t

0

BsdBs

Consequently, considering f .x/ D x2, it does not hold that df .Bt / D f 0.Bt /dBt .

Now, suppose b is L1 and � is L2 processes adapted to the filtration 11. Let

Xt D X0 C

Z t

0

bsds C

Z t

0

�sdBs; and hXit ´

Z t

0

j�sj
2ds

Theorem 3.7 (Itô Formula). Supose f 2 C 1;2.Œ0; T � �RIR/. Then

df .t; Xt / D @tf .t; Xt /dt C @xf .t; Xt /dXt C
1
2
@xxf .t; Xt /d hXit

D
�
@tf C bt@xf C j�t j

2 1
2
@xxf

�
.t; Xt /dt C �t@xf .t; Xt /dBt

which means,

f .t; Xt / D f .0;X0/C

Z t

0

�
@tf C bt@xf C j�t j

2 1
2
@xxf

�
.t; Xt /dt C

Z t

0

�t@xf .t; Xt /dBt (3.2)

11We are ignoring the discussion around adapted vs progressively measurable processes. Also, in general locally integrable
processes are sufficient to argue the Itô formula.
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3.1.1 Multidimensional Itô Formula

Let B D .B1; � � � ; Bd /> be a d -dimensional F -Brownian Motion, bi ’s are L1, � ij ’s are L2 processes
adapted to the filtration. Set b WD .b1; � � � ; bd1/> and � WD .� ij /1�i�d1;1�j�d which take values in Rd1

and Rd1�d , respectively. Let X D .X1; � � � ; Xd1/> satisfy

dX it WD b
i
tdt C

dX
jD1

�
ij
t dB

j
t ; i D 1; � � � ; d1I or equivalently, dXt D btdt C �tdBt

Theorem 3.8. Assume f 2 C 1;2
�
Œ0; T � �Rd1 IR

�
. Then

df .t; Xt /

D

h
@tf C .@xf /

>bt C
1

2
@xxf W .�t�

>
t /
i
.t; Xt /dt C .@xf .t; Xt //

>�tdBt

D

�
@tf C

d1X
iD1

@xif b
i
t C

1

2

d1X
i;jD1

dX
kD1

@xixj f�
ik
t �

jk
t

�
.t; Xt /dt C

d1X
iD1

@xif .t; Xt /

dX
jD1

�
ij
t dB

j
t :

where A W B ´ tr .ATB/ is the trace operator.12

3.2 Martingale Representation Theorem

We know that given L2 process � , the stochastic integral
R t
0 �dBs is a martingale. Martingale Representa-

tion Theorem deals with the converse.

Theorem 3.9. Suppose � is measurable with respect to the filtration of Brownian motion FBT ´ �.Bs W

0 � s � T / and square integrable. Then, there exists unique process � adapted to FBT with k�k2 < 1
such that

� D EŒ��C

Z T

0

�tdBt

Consequently, for any martingale M adapted to FB satisfying EŒjMT j
2� < 1, there exists such a unique

process � such that

Mt DM0 C

Z t

0

�sdBs

3.3 The Girsanov Theorem

In this section, we will discuss changing the measure P where B is a P -Brownian motion. In essence,
consider many paths realized by the Brownian motion. We will construct an another measure P˛ still
defined on the same set of paths but shifted in a differentiable way assigning different probabilities and
hence B will not be a Brownian motion for P˛, but B˛t ´ Bt �

R t
0 ˛sds will be.

To better make sense of the Girsanov’s Theorem, let us first discuss the canonical setup. We take
� D C.Œ0; T �IR/ as the space of continuous functions. Then, we set B W �! R as the canonical process,
that is, Bt .!/ D !t and let the filtration generated by the canonical process. Wiener formalized the fact that
there exists a probability measure P , called Wiener measure, for which B is a Brownian motion.

12Trace operator is essentially an inner product, generalizing the usual inner product of vectors.
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To show the underlying mechanism under this explanation, take a partition � W 0 D t0 < � � � < tn D T

with �ti D ti � ti�1 and consider the distribution generated by .�B1; : : : ; �Bn/ D .Bt1 �Bt0 ; : : : ; Btn �
Btn�1/. Then, take simple processes ˛, �B , and �B˛ on this � as

˛.t; !/´

nX
iD1

˛i .!/1fŒti�1;ti /g.t/;

�B.t; !/´

nX
iD1

�Bi

�ti
1fŒti�1;ti /g.t/; �B˛.t; !/´

nX
iD1

�Bi � ˛i�ti

�ti
1fŒti�1;ti /g.t/

Consider the joint density of .�B1; : : : ; �Bn/ which we will denote as dP .z1; : : : ; zn/ and compute it at
dP .�B1; : : : ; �Bn/. This is for notational convenience in the upcoming computation, and one can com-
pute the conditional expectations to recover the density. Now, we are ready to introduce a new probability
measure P˛ with the density given as;

dP˛.�B1; : : : ; �Bn/´ exp
� Z T

0

˛sdBs �
1

2

Z T

0

j˛sj
2ds

�
dP .�B1; : : : ; �Bn/

D exp
� Z T

0

˛sdBs �
1

2

Z T

0

j˛sj
2ds

� 1

2n=2j†� j1=2
exp

�
�
1

2

Z T

0

j�Bsj
2ds

�
D

1

2n=2j†� j1=2
exp

�
�
1

2

Z T

0

j�Bs � ˛sj
2ds

�
for†� D diag.�t1; : : : ; �tn/. Note that this is the same joint density, but the mean is shifted by the process
llllllll˛. Let us note explicitlyZ T

0

j�Bs � ˛sj
2ds D

nX
iD1

��Bi
�ti
� ˛i

�2
�ti D

nX
iD1

�
�Bi � ˛i�ti

�2 1

�ti

D Œ�B1 � ˛1�t1 : : : �Bn � ˛n�tn� .†
�/�1 Œ�B1 � ˛1�t1 : : : �Bn � ˛n�tn�

>

which in particular shows �Bi has expected ˛i�ti under P˛, and variance is not changed. To sum up the
main message, under P˛, �Bi � ˛i�ti has exactly the same distribution as �Bi under the original P . In
other words, �B has the same distribution under P as �B˛ under P˛. To finish the argument, ignoring the
small corrections due to partitions,Z t

0

�Bds ' Bt ; and
Z t

0

�B˛ds ' Bt �

Z t

0

˛sds

and both of them are Brownian motions under their corresponding measures. Altough it is not the rigorous
proof, we will rely on this observation and only state the main theorem. See Karatzas&Shreve [4].

Theorem 3.10 (Girsanov’s Theorem). Let .�;F ;F ;P / be a filtered space where B is F -Brownian motion
under P . Suppose ˛ be L2 process and

Mt ´ exp
� Z t

0

˛sdBs �
1

2

Z t

0

j˛sj
2ds

�
(3.3)

is a martingale. Then,

P˛.A/´ E
h
MT 1fAg

i
D

Z
A

MT .!/dP .!/; 8A 2 FT
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is a probability measure. Moreover, the process

B˛t ´ Bt �

Z t

0

˛sds

is a Brownian motion under P˛.

Exercise 3.11. (i): Prove that P˛ is a probability measure.
[Hint: Find the result where we have already proved P˛ is a measure.]

(ii): Show that M ˛
t DMt defined in (3.3) satisfies

Mt D 1C

Z t

0

M ˛
s ˛sdBs

[Hint: Itô’s Formula.]

One sufficient condition for Mt to be a martingale is the following result:13

Lemma 3.12 (Novikov’s Condition). Suppose

E
h

exp
�
1
2

Z T

0

j˛t j
2dt

�i
<1

then Mt in (3.3) is a martingale.

Notable Results and Dates

� Itô’s Formula (1944) – Kiyosi Itô

� Martingale Representation Theorem (1960s-1970s) – Paul-André Meyer, Claude Dellacherie

� Girsanov’s Theorem (1960) – Igor Girsanov

13See Kazamaki’s condition for a more general condition.
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4 Stochastic Differential Equations

In this section, we will briefly explore the notion of Stochastic Differential Equations (SDEs), which can be
seen as a stochastic version of ordinary differential equations.

Fix a filtered probability space .�;F ;F ;P /, where B is an d -dimensional Brownian motion. Our
interest here is the solution to the following equation:

Xt D X0 C

Z t

0

˛s.!;Xs/ds C

Z t

0

�s.!;Xs/dBs; 0 � t � T; a.s. (4.1)

As usual, we will omit ! from notations. Here X0 2 Rn is F0 measurable, and

˛ W Œ0; T � �� �Rn ! Rn; � W Œ0; T � �� � �Rn ! Rn�d

Moreover, ˛t .Xt / and �t .Xt / are (progressively) measurable with respect to the filtration F .

Assumption 4.1. ˛ and � are uniformly Lipschitz continuous in x with a Lipschitz constant L. That is,

j˛t .x1/ � ˛t .x2/j C j�t .x1/ � �t .x2/j � Ljx1 � x2j; 8x1; x2 2 Rn; dt � dP � a:s:

Also, X0 is in L2 and

E

�� Z T

0

j˛s.0/jds
�2�

<1; E

�� Z T

0

j�s.0/j
2ds

��
<1

We won’t be rigorously prove the well-posedness, but rather state the necessary steps. Uniqueness can
be seen immediately from the following important estimate;

Theorem 4.2. Suppose .X10 ; ˛
1; �1/ and .X20 ; ˛

2; �2/ satisfy the Assumption 4.1 and X1; X2 are the cor-
responding solutions to the SDE (4.1). Then,

E
h

sup
0�t�T

j�Xt j
2
i
� C E

�
j�X0j

2
C

� Z T

0

j�˛t .X
1
t /jdt

�2
C

Z T

0

j��t .X
1
t /j

2dt

�
where �' ´ '1 � '2 for ' 2 fX0; X; ˛; �g.

Theorem 4.3. Suppose .X0; ˛; �/ satisfy the Assumption 4.1. Then SDE (4.1) admits a unique solution.

4.1 Forward-Backward SDEs & Feynman-Kac Formula

In this section, as in previous section, we will be less concerned about rigorous arguments but rather will
go over some important concepts in a non-formal way. Altough the discussion can be carried out in higher
dimensions, to keep the notations simple and typically assume scalar valued functions implicitly.

Similar to the well-posedness of SDEs, one can work out the well-posedness of Backward SDEs (BSDE)s,
which is crucial to capture the structure of stochastic optimization in general:

Yt D YT C

Z T

t

fs.Ys; Zs/ds �

Z T

t

ZsdBs; 0 � t � T; P � a:s: (4.2)

where .Y;Z/ pair is the L2 solution with appropriate dimensions. Note that we are familiar to the con-
cept from financial contracts, where the terminal value is given and we are interested in the Yt above for
pricing purposes. It is worth mentioning that BSDEs can be seen as a nonlinear version of the martingale
representation theorem. Next result is in this direction:
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Lemma 4.4. Suppose f W Œ0; T � ��! Rn is independent of .y; z/ and define

Yt ´ E
h
YT C

Z T

t

fsds
ˇ̌
Ft
i

Then, there exists a unique L2 process Z such that .Y;Z/ is the solution to (4.2).

We now further include the forward dynamics into the discussion, typically models the price of underly-
ing assets in finance, and consider the backward equation slightly less general. That is, we will be interested
in the following decoupled Forward-Backward SDE (FBSDE) structure:8<:X

t;x
s D x C

R s
t ˛.r; X

t;x
r /dr C

R s
t �.r; X

t;x
r /dBr (forward)

Y
t;x
s D ˆ.X

t;x
T /C

R T
s f .r; X

t;x
r ; Y

t;x
r ; Z

t;x
r /dr �

R T
s Z

t;x
r dBr (backward)

(4.3)

14Notice that we included the initial time and state .t; x/ into our notations, and if t D 0, we will drop it from
superscripts. Note that all the functions are state dependent, and does not rely on paths of the processes.
One can show that the solution triplet .X; Y;Z/ is Markov, and consequently

Y
t;X

0;x
t

s D Y 0;xs

On the right, we have the value process where forward dynamics are initiated at time 0. On the left, however,
forward dynamics are initiated at time t , but starts from X

0;x
t .

Now, define
u.t; x/´ Y

t;x
t

and we remark that u.t; x/ 2 Ft and again by Markov structure, is independent of Ft . Therefore, it is a
well-defined deterministic function. Moreover, it holds that

u.t; Xt /´ u.t; X
0;x
t / D Y

t;X
0;x
t

t D Y
0;x
t DW Yt

We are now ready to observe the Feynman-Kac formula directly. Suppose u 2 C 1;2, and write down
the Itô formula:

dYt D du.t; Xt / D
�
@tuC ˛@xuC

1
2
�>@xxu�

�
.t; Xt /dt C Œ�@xu�.t; Xt /dBt

On the other hand,
dYt D �f .t; Xt ; Yt ; Zt /dt CZtdBt

Therefore, we observed�
@tuC ˛@xuC

1
2
�>@xxu� C f .�; Yt ; Zt /

�
.t; Xt / D 0 and Zt D Œ�@xu�.t; Xt /

We then write down the Feynman-Kac Formula, and adapt it to our needs in the pricing of contracts. First,
we will assume f is independent of .y; z/ and second, we will consider a discounting factor.

Theorem 4.5 (Feynman-Kac Formula). Suppose some regularity conditions (such as Lipschitz continuity
etc.) holds for the coefficients, and u 2 C 1;2 is a classical solution to the following PDE:�

@tuC ˛
>@xuC

1
2
�>@xxu� � ruC f /

�
.t; x/ D 0; u.T; x/ D ˆ.x/ (4.4)

Then,

u.t; x/ D E

�
e�r.T�t/ˆ.X

t;x
T /C

Z T

t

e�r.s�t/f .s; X t;xs /ds

�
(4.5)

14Do not confuse the integration variable r with the interest rate, which will also be denoted as r .
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Remark 4.6. (i): Note that the �ru term is due to the discounting we typically encounter in finance. By
setting Qu.t; x/ D e�r.T�t/u.t; x/, you can modify the above discussion in a straightforward manner.

(ii): Notice that this is a representation result for the solution of the PDE (4.4). The result follows
directly from Lemma 4.4. Other terms are incorporating the discounting factor appropriately.

Example 4.7. The heat equation is given by

@tu �
1
2
@xxu D 0

with some initial condition u.0; x/ D u0.x/. Then, by taking .˛; �; r; f / D .0; 1; 0; 0/, and changing the
time from backward to forward, one can observe that the solution is given by

u.t; x/ D EŒu0.x C Bt /�

This shows how the Brownian motion can directly model the diffusion of heat.

Notable Results and Dates

� Picard Iteration Method (1890) – Émile Picard

� Lévy Processes (1930s) – Paul Lévy

� Feynman-Kac Formula (1940s) – Mark Kac, Richard Feynman

� Forward-Backward SDEs (1990s) – Étienne Pardoux, Shige Peng, Jin Ma, Jiongmin Yong
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5 Portfolio & Market Structures

5.1 Portfolio Dynamics

In this section, we will review concepts related to portfolios. To reserve the notation B to the risk-free asset,
we will switch to denoting the Brownian motion (or Wiener process) as W .

We assume there are N risky-assets S D .S1; : : : ; SN /, and a risk-free asset B15. To simplify the
notations, as long as we don’t need to explicitly mention, we will treat S D .S0; S1; : : : ; SN /with S0 D B .

We characterize a portfolio by an adapted process ht D .h0t ; h
1
t ; : : : ; h

N
t / denoting the number of assets

in the portfolio, and an another scalar adapted process ct called consumption process. The portfolio value
V h is given by

V ht ´ h>t St D ht � St D h
0
tBt C

NX
iD1

hitS
i
t

Assumption 5.1. We only consider portfolios such that the portfolio value V h is an L2 process.

Definition 5.2. We say .h; c/ is a self-financing portfolio if

dV ht D ht � dSt � ctdt (5.1)

Given h, we can create the relative-portfolio u as

uit ´
hitS

i
t

V ht
; 0 � i � N

and note that
PN
iD0 u

i D 1. We can write down the self-financing condition in terms of relative-portfolio:

Definition 5.3. We say .h; c/ is a self-financing portfolio if

dV ht D V
h
t

NX
iD0

uit
dS it

S it
� ctdt (5.2)

Let us state an immediate observation as a lemma:

Lemma 5.4. Suppose there are scalar valued processes ct ; Zt ; uit , 0 � i � N where

dZt D Zt

NX
0D1

uit
dS it

S it
� ctdt; and

NX
0D1

uit D 1

Define a portfolio ht by

hit D
uitZt

S it
(5.3)

Then the value process V h is given by V ht D Zt , the pair .h; c/ is self-financing, and u is the corresponding
relative portfolio to h.

15Do not confuse with Brownian motion.
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We present this familiar notion of relative portfolio, which is convenient in certain cases such as portfolio
management. However, as we are mainly interested in pricing the contracts, we will typically encounter
arbitrage portfolios with no value, which does not immediately allow the construction of relative portfolios.

Let us motivate the self-financing condition by the discrete case. Suppose we index times with 0; 1.
Then, initial portfolio is V0 D h>0 S0, and at time 1 it becomes V1 D h>1 S1.16 If the portfolio is self
financing,

h>1 S1 C c1 D h
>
0 S1 H) .h1 � h0/

>S1 C c1 D 0

Therefore,
V1 � V0 D .h

>
1 � h

>
0 /S1 C h

>
0 .S1 � S0/ D h

>
0 .S1 � S0/ � c1

In words, change in portfolio value is due to the change in the price of the assets and the consumption only.
(5.1) in the definition reflects the same idea.

If one wants to see the connection between discrete and continuous indexing more formally, with appro-
priate definitions and no consumption, it suffices to write that for a partition 0 D t0 < t1 < � � � < tn D t ,

nX
iD1

Vti � Vti�1 D

nX
iD1

h>ti�1.Sti � Sti�1/C .hti � hti�1/
>Sti D

nX
iD1

h>ti�1.Sti � Sti�1/

and then notice that as the partition size converges to 0, this is exactly (5.1).
Let us also present the core notion of finance that pricing of derivatives are build upon. Consumption is

irrelevant in the pricing of derivatives, so we will assume c D 0 and don’t mention it.

Definition 5.5. We say a self-financing portfolio h is an arbitrage portfolio if

V h0 D 0; P .V hT � 0/ D 1; P .V hT > 0/ > 0

We will not be treating dividends, but to briefly mention, suppose stochastic processesDt D .D1t ; : : : ;D
N
t /

are given representing the cumulative dividends paid for each stock. We may assume that cumulative divi-
dends paid for each stock will be given as Dit D

R t
0 ı

i
sds, where the process ıit is called the dividend yield.

Now, define the so called gain process Gt D St CDt and the self-financing condition becomes

dV ht D h
>
t dGt � ctdt

Note that, altough the price of the underlying asset is St , if one considers a portfolio holding this asset, the
portfolio value is following the gain process.

5.2 Market Dynamics

First, let us start with generalized geometric Brownian motion, which we model our price dynamics of risky
assets.

Example 5.6 (Generalized Geometric Brownian Motion). We call the stochastic process St

St D S0 exp
� Z t

0

�sdWs C

Z t

0

�
˛s �

1
2
�2s
�
ds
�

(5.4)

the generalized geometric Brownian motion, which satisfies the following SDE:

dSt D ˛tStdt C �tStdWt (5.5)

Here, ˛; � are bounded, adapted processes. We typically call ˛ as drift and � as volatility.
16To handle predictibility of the portfolio, in discrete time, typically one considers index as shifted. We won’t rigorously discuss

this point further.
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Exercise 5.7. (i): Show that (5.4) indeed satisfies the SDE (5.5).
(ii): Suppose ˛ and � are constants. Find the ODE that NS.t/ ´ EŒS.t/� satisfies and write down the

explicit solution.

Definition 5.8. We say B is a risk-free asset if the dynamics are given as

dBt D rtBtdt; that is, Bt D B0 exp
� Z t

0

rsds
�

(5.6)

for some bounded, adapted process rt .

An important special case is the famous Black-Scholes model (BS). The dynamics of BS is modeled by
one risk-free and one risky asset, as in (5.5) and (5.6), where .r; ˛; �/ are all constant.

Figure 2: Sample paths of St in the Black-Scholes model.

When we aim to consider N -assets, similar to (5.5),we model it as the solution to the following SDE

dSt D St ı ˛tdt C St ı �tdWt (5.7)

Here, ˛ 2 RN ; � 2 RN�d are bounded, adapted stochastic processes, W is a d -dimensional standard
Brownian motion, and ı is the Hadamard product (element-wise product) between two vectors. To be able
to make sense of

St ı .�tdWt / D .St ı �t /dWt (5.8)

we extend the Hadamard product .x ı �/ between a vector in x 2 RN and a matrix in � 2 RN�d as i th
element of the vector multiplying the i th row. If x 2 Rd , then we set right multiplication .� ı x/ as the
i th element of the vector multiplying the whole i th column. Moreover, we denote x�1 as the elementwise
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inverse, that is x�1 ´ Œ1=x1; : : : 1=xd �. Our choice here is tailored to be compatible with Hadamard
product and if N D d satisfy

.x�1 ı ��1/.� ı x/ D IdN�N D .x ı �/.��1 ı x�1/

where ��1 is the usual inverse of N �N square matrix.
To be more explicit, for any i D 1; : : : ; N ,

S it D S
i
0 C

Z t

0

S is˛
i
sds C

Z t

0

S is

dX
jD1

� i;js dW j
s

5.3 Contingent Claims

One of the central interest in math finance is to understand how to price contracts, or so called contingent
claims. Recall that we fix a time horizon T 17, a filtered probability space .�;F ;F ;P / and typically Ft D
FSt D �.Ss W 0 � s � t / given by the dynamics of risky asset S .

Definition 5.9. We say X is a contingent claim if X 2 FT . We say X is a simple claim if X 2 �.ST /.
In this case, by Doob-Dynkin Theorem 1.31, X D ˆ.ST / for some measurable deterministic function ˆ
called contract function.

Example 5.10. Europen call and put options with strike price K are simple claims where

ˆcall.x/ D .x �K/C; ˆput.x/ D .K � x/C

Before moving on to the main focus of pricing these contingent claims, let us briefly review some
examples, without delving into exact details, to illustrate their high relevance in the finance industry. Call
and Put options, also known as vanilla options, are extensively traded for equities on stock exchanges such
as the New York Stock Exchange (NYSE) and NASDAQ. There are also contracts known as exotic options,
where market makers are typically investment banks like Goldman Sachs, J.P. Morgan, and Barclays. For
instance, Asian options provide exposure to the average price of an asset, which is particularly useful in the
commodity market for producers, such as in the oil or agriculture industries. Another example is lookback
options, which depend on the maximum or minimum price of the underlying asset and are commonly used
in currency markets to hedge against unfavorable exchange rate movements by locking in the best historical
rate.

Additionally, there are contracts called swaptions, which are interest rate derivatives commonly used
by hedge funds, institutional investors, and banks. Credit default swaps (CDS), for instance, are used to
hedge the default risk of corporate debt, protecting against the risk that a company will fail to meet its debt
obligations. Furthermore, there are weather derivatives for temperature, rainfall, or other adverse weather
events, which are typically issued by companies such as Swiss Re and Aon. Agricultural producers, energy
companies, and insurance firms use these derivatives to hedge weather-related risks. Although the under-
lying dynamics of these contracts may require different models, the central idea of risk-neutral pricing will
remain the same across all of them.

A standard notation for the price of a contingent claim is ….t IX / in general, and ….t Iˆ/ in case X is
a simple claim.18 The price of the contract at the terminal time T has no ambiguity. That is, by definition,
….T IX / D X . We are interested in the price of a contract for 0 � t � T .

We have an important assumption which will always be in consideration.

17T is typically called maturity date, terminal time, time horizon etc. all refers to time when contract terminates.
18We may omit X (or ˆ) if it is clear.
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Assumption 5.11. All the assets, such as risk-free, risky and derivatives of risky assets, are all tradeable
without any restrictions or costs.

We have seen in discrete models that ’frictions’ in the markets give rise to an interval of arbitrage free
pricing, rather than a unique price. For the purposes of this course, we will not attempt to model such
generality in continuous framework.

Proposition 5.12. Suppose there exists a self-financing portfolio h, such that the value process V h satisfies

dV ht D ktV
h
t dt

for some adapted process kt . If rt D kt dt �dP -a.s. does not hold, then there exists an arbitrage portfolio.

Assumption 5.13. We assume the market formed by financial assets .B; S;X / is arbitrage free.

Next, we will derive Black-Scholes equation, the PDE that the price of the contingent claim satisfies
under some simplifying assumptions.

Theorem 5.14 (Black-Scholes Equation). Consider a simple claim X D ˆ.ST / under the Black-Scholes
model. Suppose Assumptions 5.11 and 5.13 holds. Moreover, we assume that the price of the contract is
determined by F 2 C 1;2.Œ0; T � �RIR/ where

….t Iˆ/ D F.t; St /

Then, F is the classical solution to the Black-Scholes PDEh
@tF C rx@xF C

1

2
x2�2@xxF � rF

i
.t; x/ D 0; with terminal F.T; x/ D ˆ.x/

Definition 5.15. We say that contingent claim X can be replicated (or reachable, or hedgeable) if there
exists a self-financing portfolio h investing in risk-free and the underlying risky asset such that

X D ….T IX / D V hT P � a:s:

Lemma 5.16. Suppose X is hedgeable by h. If there is no arbitrage, then ….t;X / D V ht for all t P -almost
surely. Moreover, if an another self-financing portfolio g is hedging X too, then V ht D V

g
t for all t almost

surely.

Definition 5.17. We say that a market is complete, if every contingent claim is replicable.

Theorem 5.18 (Risk Neutral Valuation). Suppose Assumptions 5.11 and 5.13 holds. Consider the gener-
alized Black-Scholes model:

dBt D rtBtdt; dSt D ˛tStdt C �tStdWt (5.9)

where rt ; ˛t and �t � c > 0 are adapted bounded processes.
(i): Generalized Black-Scholes model (5.9) is complete.
(ii): For any contingent claim X 2 FST written on S , the price is given by

….t IX / D BtE�
h�
X=BT

�ˇ̌
FSt

i
(5.10)

where E� is taken under risk-neutral probability measure P � for which

dSt D rtStdt C �tStdW
�
t ; whereW � is P � -Brownian motion

(iii): If we further assume the structure in Theorem 5.14, representation of F is given by

F.t; x/´ e�r.T�t/E
�
ˆ.X

t;x
T /

�
(5.11)

where
dX t;xs D rX

t;x
s ds C �X t;xs dWs; X

t;x
t D x (5.12)
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Example 5.19 (Forward Contract). Let us consider the forward contract, which is characterized by ˆ.x/ D
x � F , where F is the aggreement price of the contract to be determined. Then, (5.10) implies

F.t; x/´ e�r.T�t/E
�
X
t;x
T

�
� Fe�r.T�t/

where we know that E
�
X
t;x
T

�
D xer.T�t/. Moreover, we design the forward contract such that F.0; S0/ D

0, hence
F.0; S0/ D 0 D S0 � Fe

�rT
H) F D S0e

rT

Example 5.20 (European Call). Another well known example is the European call contract, for which
ˆ.x/ D .x �K/C. Note that, by (5.4), we know the explicit solution and

log.X t;xT =x/ � N
�
.˛ � 1

2
�2/.T � t /; �

p
T � t

�
By Risk Neutral Valuation;

F.t; x/ D e�r.T�t/
Z

R
ˆ.xez/f .z/dz

where f is the pdf of log.X t;xT =x/. By explicit computations, one arrives at

CEK .t; St IT /´ F.t; St / D StN.dC/ �Ke
�r.T�t/N.d�/

where N is the cdf of standard normal distribution and

d˙´
log.St=K/C .r ˙ 1

2
�2/.T � t /

�
p
T � t

Example 5.21 (Asian & Lookback Options). We will only introduce here to give an example of non-simple
contingent claims. Fixed strike Asian options’ terminal payoff is given by

X D
� 1
T

Z T

0

Stdt �K
�C

and floating strike lookback options terminal payoff is given by

X D ST � inf
0�t�T

St

Note that in both cases X 2 FST but X … �.ST /.19

5.4 Contracts are dense & Hedging the Greeks

Let us first note that the pricing formula (5.10) is linear in the contract:

Lemma 5.22. Let X ;Y are two contingent claims and a 2 R. Then,

….t I aX C Y/ D a….t IX /C….t IY/
19This � represents the � -algebra, do not confuse with the volatility.
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Now, our aim is to approximate any continuous terminal payoff with a constant (or buy-and-hold) port-
folio. Linear combinations of bond and the risky-asset is not sufficient to replicate much, however, together
with linear combinations of call options with all strikes is rich enough to approximate every continuous
function. Let us now introduce the associated contracts

ˆS .x/´ x (risky-asset); ˆB.x/´ 1 (bond); ˆKC .x/´ .x �K/C; ˆKP .x/´ .K � x/C

with pricing

….t IˆS / D S.t/; ….t IˆB/ D e
�r.T�t/; ….t IˆKC .x// DW C

E
K .t; x/; ….t Iˆ

K
P .x// DW P

E
K .t; x/

We may add .T; r; �/ to the notations of contracts when necessary. Recall the Put-Call parity, which follows
from the fact:

(Synthetic Future) ˆKC �ˆ
K
P D ˆS �KˆB

Lemma 5.23 (Put-Call Parity). Price of the Europen call and put contracts satisfies

CEK .t; S IT / � P
E
K .t; S IT / D S �Ke

�r.T�t/

Note that, in particular, put contract can be replicated by holding one call contract, K bonds and selling
the underlying asset. Then, it is easy to argue that

Proposition 5.24. The set�
aSˆS C aBˆB C

nX
iD1

 iˆ
Ki
C W 8n 2 N; aS ; aB ; 

i ; Ki 2 R; 1 � i � n

�
is dense in the set of continuous functions with compact domain under the supremum norm.

and hence we coclude that every simple contingent claim with a compact continuous terminal can be
(approximately) replicated with a buy-and-hold strategy.

5.4.1 The Greeks

In this section, we will discuss the sensitivity of the contract to the underlying parameters, and discuss how
to find portfolios that are insensitive to them.

Definition 5.25. Let D D D.t; s; T; r; �/ be any pricing function. Then, we define “the greeks”:

�D ´ @sD; �D ´ @ssD; �D ´ @rD; ‚D ´ @tD; VD ´ @�D

We note that D might represent the price of a single contract or a whole portfolio.

Proposition 5.26. Under the Black-Scholes model, the greeks of European call price is given by

� D N.dC/; � D
f .dC/

S�
p
T � t

; � D K.T � t /e�r.T�t/N.d�/;

‚ D
�sf .dC/�

2
p
T � t

� rKe�r.T�t/N.d�/; V D sf .dC/
p
T � t

where f;N are pdf and cdf of standard normal distribution.
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Figure 3: The greeks of a European Call option depending on S where K D 100; T D 1; r D 3%; � D 10%.

5.4.2 Hedging the Greeks

We say a portfolio is neutral if the mentioned greek is 0. For example, we say portfolio V is �-neutral if
�V D 0. Recall the proof of Black-Scholes Theorem 5.14, where we replicated the contract by matching
the amount of the underlying asset exactly to the � of the contract. In the perspective of a market maker,
they can sell any contract and in theory replicate it by the underlying asset. However, as we cannot adjust
portfolios continuously without any frictions, it is important to be able to create portfolios that are insensitive
to some parameters.

We will briefly discuss how we can create portfolios that are� and �-neutral. Before that, let us mention
two more greeks

VannaD ´ @� .�D/; CharmD ´ @t .�D/

which is important for market makers. As we discussed why � is important, how � is changing is also
important.

Suppose we are given two contracts D and D0, for example two call options with different strike or
maturities. Let .h1; h2; 1/ be an absolute portfolio investing in (risky-asset, D, D0). Note that the price of
this portfolio is

V h D h1S C h2D CD
0

Here V h is treating the parameters as given variables, but not like St as usualy. For example, @tV h is
independent of the change in the current price. Then,

�V h D h1 C h2�D C�D0 ; �V h D h2�D C �D0
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Set them equal to 0 to get

h2 D �
�D0

�D
; h1 D

�D0

�D
�D ��D0

That is, if you want to holdD0 in your portfolio but does not want to be sensitive to the change in underlying
assets price up to second order, you need to add .h1; h2/ many (asset, D) in your portfolio.

5.5 Multiple asset case

Now, we will carry out a similar analysis when there are N assets and dynamics are given by the SDE (5.7).

Remark 5.27.
(i): The definitions 5.9, 5.15, 5.17, and assumptions 5.11, 5.13 are independent of the number of assets.

Moreover, as we consider a scalar value process with a single risk-free asset, proposition 5.12 and lemma
5.16 are also independent of number of assets.

(ii): In section 3, not only Itô formula has multidimensional version, but Martingale representation the-
orem and Girsanov’s theorem also extends to d -dimensional Brownian motion in a straightforward manner.
Moreover, the discussion in section 4 carried out in one dimensions, but by using the multidimensional Itô
formula, we can get the multidimensional Feynman-Kac formula.

We will observe that the only notable difference between the scalar case is due to the volatility. In the
one-dimensional case, it was enough to assume the volatility is non-zero to define the Sharpe ratio. Here,
we assume that there exists an adapted stochastic process � such that

�t�t D �.˛t � rt1/ (5.13)

holds almost surely, where 1 is the N -dimensional vector with all the entries equal to 1. In other words,
�.˛t � rt1/ 2 Im.�t / almost surely. Let

M �
t ´ exp

� Z t

0

�s � dWs �
1

2

Z t

0

j�sj
2ds

�
; dP � ´M �

T dP ; W �
t ´ Wt �

Z t

0

�sds

By the Girsanov’s theorem, W � is a standard Brownian motion under P � . Then, the dynamics of the price
processes are given by

dSt D St ı ˛tdt C St ı �t .dW
�
t C �tdt/ D rtStdt C St ı �tdW

�
t

That is, discounted price processes are martingale under P � . We call such � admissible, if it satisfies the
conditions of Girsanov’s theorem. That is, k�k2 < 1 and M � is a martingale. Furthermore, � ´ �� is
called the market prices of risk. Note that the right hand side of (5.13) is the excess return of assets over the
risk-free rate, and in particular for i 2 f1; : : : ; N g,

˛it � rt D

dX
jD1

�
i;j
t �

j
t

Here, important point is that the same � determines the excess return of the asset, independent of i .
Altough we introduced the multi asset case with N many assets and d many Brownian motions, we

will assume N D d and then � becomes a square matrix. Then, we will require � to be nonsingular, or
IM.�t / D RN . In the next section, we will discuss the underlying reasons for such choice.

For notational purposes, recall the discussion around the Hadamard product (5.8). We again remark that,
up to multidimensional notations and above discussion, Theorem 5.14 & 5.18 are exactly the same.
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Theorem 5.28 (Black-Scholes Equation). Consider a simple claim X D ˆ.ST / under the Black-Scholes
model.20 Suppose Assumptions 5.11 and 5.13 holds. Moreover, we assume that the price of the contract is
determined by F 2 C 1;2.Œ0; T � �RN IR/ where

….t Iˆ/ D F.t; St /

Then, F is the classical solution to the Black-Scholes PDE�
@tF C rx

>
rxF C

1

2
tr
�
.x ı �/.x ı �/>r2xxF

�
� rF

�
.t; x/ D 0 with terminal F.T; x/ D ˆ.x/

where rxF D Œ@x1F; : : : ; @xNF �
> and similarly r2xxF is the Hessian of F .

Theorem 5.29 (Risk Neutral Valuation). Suppose Assumptions 5.11 and 5.13 holds. Consider the gener-
alized Black-Scholes model:

dBt D rtBtdt; dSt D St ı ˛tdt C St ı �tdWt (5.14)

where rt ; ˛t and �t are any adapted processes, and � 2 RN�N is nonsingular dt � dP -almost surely.
(i): Generalized Black-Scholes model (5.14) is complete.
(ii): For any contingent claim X 2 FST written on S , the price is given by

….t IX / D BtE�
h�
X=BT

�ˇ̌
FSt

i
(5.15)

where E� is taken under risk-neutral probability measure P � for which

dSt D rtStdt C St ı �tdW
�
t ; whereW � is P � -Brownian motion

(iii): If we further assume the structure in Theorem 5.28, representation of F is given by

F.t; x/´ e�r.T�t/E
�
ˆ.X

t;x
T /

�
(5.16)

where
dX t;xs D rX

t;x
s ds CX t;xs ı � dWs; X

t;x
t D x (5.17)

5.6 Fundamental Theorems of Asset Pricing

In this section, we will closely follow the discussion given in [5]. Our main interest is to understand the
fundamental theorems characterizing the completeness and arbitrage opportunities in the market.

But first, let us briefly mention a common rule of thumb for market completeness and arbitrage op-
portunities in our model with multiple assets, sometimes referred to as a Meta Theorem. Recall that we
assume N D d , that is, the number of assets equals the number of independent sources of noise. Under the
assumptions we have discussed, this is a typical case where the market is both complete and arbitrage-free.

If there are more assets than sources of noise (N > d ), the market may still remain complete, meaning
that all contingent claims can be hedged.21 However, there is a higher risk of encountering arbitrage op-
portunities. For example, in the extreme case where d D 1 and N is very large, either assets are perfectly
correlated, or arbitrage opportunities exist. To see this in our proofs, recall the construction of P � by the
Girsanov’s theorem. If d D 1, then (5.13) must be satisfied with a scalar � .

20In the multidimensional case, the Black-Scholes model still refers to the case where .r; ˛; �/ are constants.
21If there are arbitrage opportunities in the market, it is not that meaningful to discuss completeness.
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On the other hand, if there are more sources of noise than assets (N < d ), the market becomes incom-
plete, as it becomes difficult to hedge all possible contingent claims. However, it also becomes less likely
to find arbitrage opportunities, since many sources of noise cannot be fully hedged. For example, in the ex-
treme case where there is only a single asset driven by multiple Brownian motions, arbitrage opportunities
are absent, but there may still be contingent claims that cannot be perfectly hedged by trading the single
asset. In the proof of Risk Neutral Valuation, one will notice that FS � FW is strict and thus we cannot
invoke Martingale Representation Theorem.

Now, recall that while introducing the portfolio dynamics, we had S D .S0; S1; : : : ; SN / where S0

represents the risk-free asset. We assume that S0 > 0 almost surely, and change our perspective to so called
normalized economy:

Definition 5.30. The normalized economy (also referred as Z-economy) is defined by the price process Z
given by

Zt D
St

S0t
D

�
1;
S1t

S0t
; : : : ;

SNt

S0t

�
Recall that, given a portfolio ht D .h0t ; h

1
t ; : : : ; h

N
t /, we defined the value V ht D h>t St . To distinguish

it from the normalized economy, we will call this value as S -value of h, and might denote it as V S if h
is clear and we need to distinguish it from the normalized economy. Then, we call V Zt ´ h>t Zt as the
Z-value of h, and say that h is Z-self-financing portfolio if dV Zt D htdZt . We then have an equivalence
between these two economies:

Lemma 5.31 (Invariance Lemma).

(i) h is a self-financing portfolio if and only if it is a self-financing portfolio in the normalized economy.

(ii) For any portfolio h, S0t V
Z
t D V

S
t .

(iii) A contingent claim is X is replicable if and only if X=S0T is replicable in the normalized economy.

Relying on this invariance, from now on, we will always assume S0t D 1. So far, we have not really
restricted our set of portfolios, but only assumed regularities and adaptedness, which only means it depends
on the current information and not the future.22 However, this class is far too large and not realistic. For
example, we can consider a strategy similar to the classic doubling down by borrowing more and more
money, betting higher and higher on a risky asset if we loose. Such strategies are guaranteed to win (with
probability 1), but expected time to win and hence the amount needed to be borrowed is not finite. To avoid
such portfolios, we have the following definition;

Definition 5.32. We say a portfolio h is admissible, ifZ t

0

hsdSt � �C
h > �1

almost surely for some constant C h that depends on h.

Note that, when h is self-financing, admissibility means V ht � V
h
0 � �C

h. That is, your potential loses
are not infinite. To get familiar with the terms, let us also make the following definition

Definition 5.33. We say Q is an equivalent (local) martingale measure (martingale measure, EMM) if

22When we integrate portfolio h with respect to semimartingale price processes, we require h to be predictable. Again, we avoid
such discussions in this course.
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(i) Q � P , that is, Q is equivalent to P , and

(ii) the price process S is a (local) martingale under Q.

In our case, we already constructed the EMM by Girsanov’s theorem. Note that, in the normalized
economy,

dZt D d..S
0
t /
�1St /

h
dZt D Zt ı �tdW

�
t

i
D �.S0t /

�2d.S0t /St C .S
0
t /
�1dSt

D �.S0t /
�1d.S0t /Zt C .S

0
t /
�1.rtStdt C St ı �tdW

�
t /

D �rtZtdt C rtZtdt CZt ı �tdW
�
t

That is, Z is a martingale. Also, recall that P � .A/´ EŒMT 1fAg�. Hence, P .A/ D 0 ” P � .A/ D 0.
This concludes P � is an EMM for the normalized economy.

We are ready to start collecting the main results:

Lemma 5.34. Consider the N -asset market defined in section 5.2. Due to the existence of an equivalent
martingale measure, there cannot be any arbitrage portfolio.

For our purposes, since we already have the existence of EMM in our framework, Lemma 5.34 is the
First Fundamental Theorem of Asset Pricing. Under appropriate generalization of arbitrage, these conditions
are equivalent in a considerably more general setting:

Theorem 5.35 (First Fundamental Theorem of Asset Pricing). Let the price process S be a locally
bounded real valued semi-martingale. Then, there exists an equivalent martingale measure if and only if
(NFLVR) condition holds.

Now, we will explore the definitions in this theorem. First, in the context of stochastic processes, “local”
means that the corresponding property holds only up to some random time �n, but for which �n " T as
n!1. Therefore, locally bounded means OSt ´ S�n^t are bounded, and it is quite general. For example,
all continuous adapted processes are locally bounded, with �n ´ infft > 0 W jSt j � ng. Processes that
exhibits jumps are also locally bounded, as long as jump sizes are bounded. Thus, locally bounded price
process is quite a general assumption.

Next, semi-martingale means that S is of the form

St D At CMt

where M is a local martingale, and A is a cádlág23 adapted process with locally bounded variation. This
class is also quite general, and it is important to note that this is the largest class where Itô integrals are
defined. Due to this generality, even if the market is not well-described by our framework in section 5.2,
equivalence between existence of a martingale measure and no arbitrage condition still holds true in the
markets.

To explain the more general arbitrage condition that the theorem requires, we first introduce some spaces
of functions. First,

K´
� Z T

0

htdSt W for all admissible ht

�
23Cádlág process means left limits exists and right continuous, almost surely.
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is the space of contingent claims reachable by portfolios with 0 initial value. Next,

C ´
n
g 2 L1.FST /24 W there exists f 2 K s.t. g � f

o
is the set of bounded contingent claims dominated by reachable portfolios with 0 initial value. The reason
to consider C is to generalize our market and include contingent claims (or contracts) into consideration.
A contingent might not be exactly achievable by a replicating portfolio (only with underlying assets), but
might be dominated by one. Then, a more general no-arbitrage condition including any bounded contingent
claim is given by

C \ L1;C.FST / D f0g

That is, there is no bounded contingent claim with only positive payoff, dominated by a reachable portfolio
with no initial investment. Then, we have a slight generalization as follows:

Definition 5.36. We say that the market has no free lunch with vanishing risk (NFLVR) if

NC \ L1;C.FST / D f0g

where NC is the closure C in L1.FST /.
25

To understand the condition, suppose it does not hold. Then there is a non-zero contingent claim with
positive values. Then, for any nearby contingent claim in L1.FST /, we can find a portfolio in K dominating
this contingent claim. It does not require that these portfolios are positive, however, as their limit dominates
a positive contingent claim, ’risk is vanishing’. And since the contingent claim is not exactly 0, limit of the
portfolios becomes an arbitrage.

We are not interested in the technical details of the proof, but the overall scheme goes as follows: If there
exists an equivalent martingale measure, and hence the price processes are martingales under this measure,
as long as the portfolios generated are also martingales we are done as in lemma 5.34. In general settings,
this might not be the case and one might need to argue supermartingale property by relying on admissibility
of portfolios. Now, the difficult part is to start by assuming NFLVR condition. One needs to study convex
analysis, and when convex sets can be seperated by hyperplanes. Hahn-Banach is the central one, but here
one needs a more technical result by Kreps-Yan. By noting that C and L1;C are convex sets with only
common function 0, there exists an integrable, strictly positive function � such that

EŒ�X� � 0 8X 2 C; and EŒ�X� � 0 8X 2 L1;C

Here, � seperates these two convex sets of functions. Given that one can rigorously show this, the rest of the
proof is easier to handle. Define dQ´ �dP , and note that this is a measure by 1.12. Since � is integrable,
after a scaling, it is a probability measure. This is our candidate equivalent martingale measure. Equivalency
follows by strict positivity of � . Now, take any s < t , A 2 FSs , and define the self-financing portfolio

h.r; !/´ 1fŒs;t�g.r/1fAg.!/.�S is .!/; 0; : : : ; 0; 1; 0; : : : ; 0/

where 1 appears at the i th place. In words, we buy 1 asset S i at time s if A occurs, and finance it by
borrowing money (at zero interest by invariance lemma), and close those positions back at time t . Now,
ignoring the admissibility of the portfolio h, V ht 2 K. Due to EŒ�X� � 0 for all X 2 C, we also have
EŒ�V ht � � 0. However, if EŒ�V ht � < 0, then �V ht is also in K, which then forces EŒ�V ht � D 0. Writing it
explicitly,

E

�
�

Z T

0

htdSt

�
D EQ

� Z T

0

htdSt

�
D EQŒ.S it � S

i
s /1fAg� D 0

24L1.FS
T
/ is the space of almost surely bounded functions, measurable to FS

T
D �.St W 0 � t � T /.

25Closure of C is taken under the topology generated by the operator norm, where L1 functions acts on L1 functions.
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Since A 2 Fs is arbitrary, this is an equivalent way of defining martingale, and we conclude the price
processes are martingales.

We now move to discuss the characterization of completeness (see definition 5.17) of the market.

Theorem 5.37 (Second Fundamental Theorem of Asset Pricing). Suppose there exists an equivalent
local martingale measure Q. Then, the market is complete if and only if Q is the unique local martingale
measure.

Suppose the market is complete. Then for any X 2 FST , there exists a self-financing portfolio h with
V hT D X . By assuming sufficient regularities (to avoid discussions around ’local’), since V ht � V

h
0 DR t

0 hsdSs is a stochastic integral with respect to a martingale, V ht is also a martingale. Therefore,

V h0 D EQŒV hT � D EQŒX �

Suppose there exists an another equivalent martingale measure QQ. Consider any set E 2 FT and set
X D 1fEg. By above, and since the market is complete,

Q.E/ D EQŒX � D V h0 D E
QQŒX � D QQ.E/

That is, Q is unique.
Now, supposeQ is unique and take a contingent claim X 2 FST . Then, by a generalization of Martingale

Representation Theorem that holds for any (local) martingale, there exists Z such that

X D EQŒX �C
Z T

0

ZtdSt

and we are done as Z provides the replicating portfolio. Here, uniqueness is used to invoke the representa-
tion theorem.
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6 A Tour in Stochastic Optimal Controls

In countless settings, whenever there exists an agent aiming to decide on various actions, it is crucial to
understand how to behave optimally. In this section, we will explore situations where the underlying dy-
namics are characterized by SDEs. We will apply these concepts to Merton’s problem, where a financial
advisor aims to decide how much risk to take for a retiring customer. It is important to note that there is
ongoing cutting-edge research in this field, where both the dynamics and objectives are evolving, such as in
reinforcement learning.

Let us first introduce the dynamics given by the SDE X t;x;� D X� :

dX�t D �.t; X
�
t ; �.t; X

�//dt C �.t; X�t ; �.t; X
�//dWt (6.1)

The core addition is that there exists a space called action space, denote it as A, where the agent has choices
to make. We take � W Œ0; T � � C.Œ0; T �IRd / ! A as the admissible control of the agent whenever (6.1)
is well-posed, and denote A as the set of all such controls. For example, the agent might be constructing
a portfolio and amounts of financial assets are the choices of the agent. Note that, we let the controls to
depend on the whole process X , which should also satisfy adaptedness in the sense that �.t; x/ can only
depend on xŒ0;t�.

To find what is the optimal control, one needs to set the preferences. What we know is that, given � , we
have a flow of distributions fLX�t g0�t�T for the evolution of the dynamics. Then, the agent should decide
on which states are prefered, in order to determine which � is the best. To do so, the agent assigns two
functions F W Œ0; T � � Rd � A ! R and G W Rd ! R as running cost and terminal cost, which orders
the states. Moreover, running cost incorporates the potential costs of taken actions. For a different example,
imagine that you are controlling a robot and trying to direct it to a particular position. In this case, it might
be costly to accelerate and agent might aim to minimize energy consumption by penalizing it through the
running cost. Now, we assign the cost of the control � as

J.t; x; �/´ E
h
G.X�T /C

Z T

t

F.s;X�s ; �.s; X
�//ds

i
; where X� D X t;x;�

Note that, minimizing or maximizing is essentially the same problem up to a scalar constant, and we will
continue with minimization problem. Thus, the value26 of the problem is

V.t; x/ D inf
�2A

J.t; x; �/ (6.2)

An important property of V is that it is time-consistent. It is typically called Dynamic Programming Prin-
ciple (DPP), but the origin of the name is not due to mathematical concern. Let us state it first and then
discuss:

Theorem 6.1 (Time Consistency). For any t � T0 � T , it holds

V.t; x/ D inf
�

E
h
V.T0; X

�
T0
/C

Z T0

t

F.s;X�s ; �.s; X
�//ds

i
where X� D X t;x;� .

Note that the left hand side V.t; x/ is the original problem starting from t ending at T . On the right, we
have the same optimization problem again starting from t , but ends at a middle time T0 with the terminal

26This is typically called the value, as there is no conceptual difference between minimizing and maximizing; we use whichever
term is more suitable.
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cost taken as V.T0; �/. This is the crucial property that will allow us to obtain the PDE approach. Note that,
one can solve the optimization problem ŒT � ı; T � first, and then use the value at T � ı as a terminal to solve
ŒT � 2ı; T � ı� and so on.

Before the proof, let us mention the core idea of it. Easier direction says the optimal control for Œt; T �
problem is also optimal for appropriately defined Œt; T0� and ŒT0; T � problem. Direction that is harder to
obtain is if we have optimal controls for Œt; T0� and ŒT0; T �, we can obtain an optimal control for Œt; T �
problem.

Now, Hamilton-Jacobi-Bellman (HJB) equation that the value V will satisfy is given as follows:

@tV C inf
a2A

�
�@xV C

1
2
�2@xxV C F

�
.t; x; a/ D 0; V .T; x/ D G.x/ (6.3)

Let us briefly discuss what is going on. First of all, terminal value has to be the terminal costG by definition.
Next, the equation consists of two parts: the first from the Itô formula, representing the change in value with
respect to the state process, and the second, the running (immediate) cost F . It is in a sense obvious, but
important fact that we are not finding the optimal action that only minimizes the running (or immediate)
cost F . Instead, we should consider how our actions would change our value V due to the change of the
underlying dynamics, and choose the infimum accordingly.

To rewrite the HJB equation, and seperate the optimization part, introduce the Hamiltonian:

h.t; x; z; ; a/´ �.t; x; a/z C
1

2
�2.t; x; a/ C F.t; x; a/; H.t; x; z; / D inf

a2A
h.t; x; z; / (6.4)

Then, the HJB equation reads

@tV.t; x/CH.t; x; @xV.t; x/; @xxV.t; x// D 0

Theorem 6.2 (Verification). Let V be defined as in (6.2). Then,

(i) If V 2 C 1;2, then V satisfies the HJB equation (6.3).

(ii) If U 2 C 1;2 solves the HJB equation, then U D V .

(iii) Suppose U 2 C 1;2 solves the HJB equation, and there exists a Borel measurable function I such that

h.t; x; z; ; I.t; x; z; // D H.t; x; z; /

and the following SDE has a strong solution:

X�t D x0 C

Z t

0

�.s;X�s ; I.s; X
�
s ; @xU.s;X

�
s /; @xxU.s;X

�
s ///ds C

Z t

0

�.� � � /dWs

Then, ��.t; x/´ I.t; x; @xV; @xxV / is an optimal control for V.0; x0/.

6.1 Merton’s Portfolio Problem

The Merton Problem addresses the allocation of a portfolio between a risky asset, such as the S&P 500, and a
riskless asset, like money market funds. We will now investigate this problem under standard Black-Scholes
model with a CRRA utility function, which enables the explicit computation of the optimal allocation. This
subsection closely follows the lecture notes of Lacker [7].

Suppose our control � determines the relative propotion of our portfolio in the risky asset, and hence
1 � � is in risk-free asset. That is, our state process is given by

dX�t D
�tX

�
t

St
dSt C

.1 � �t /X
�
t

Bt
dBt D

�
˛�tX

�
t C r.1 � �t /X

�
t

�
dt C

�
��tX

�
t

�
dWt
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Suppose we do not have a running cost F D 0, but the terminal cost is given by

G.x/´
x1��

1 � �
; � > 0; � ¤ 1

Note that @xG.x/ D x��, reflecting that as the wealth increases, change in utility decrease. Here, � > 1

represents risk-averse and � < 1 represents risk-seeking preferences.
Let us write down the Hamiltonian (6.4):

H.t; x; z; / D sup
a2A

�
.˛ a x C r.1 � a/x/ z C 1

2
j� a xj2

�
D sup
a2A

�
r x z C a.˛ � r/xz C 1

2
.�2x2/ a2

�
Notice that, we are considering maximization problem. Also, we set A D R, allowing short selling and
borrowing. Obviously if  > 0, Hamiltonian becomes infinity. Hence, we assume  < 0. Then, it is just a
quadratic equation over a that we are trying to maximize. We can easily deduce

H.t; x; z; / D rxz �
.˛ � r/2z2

2�2

where the maximizer is

I.t; x; z; / D �
.˛ � r/z

�2x

Let us write down the (6.3):

@tV.t; x/C rx@xV.t; x/ �
1

2

�˛ � r
�

�2 .@xV /2
@xxV

D 0 (6.5)

To solve it, we make an ansatz as V.t; x/ D f .t/G.x/. Then,

@tV.t; x/ D f
0.t/G.x/; @xV.t; x/ D f .t/x

��; @xxV.t; x/ D ��f .t/x
���1

and plugging into (6.5) yields

x1��
�

1

1 � �
f 0.t/C rf .t/C

1

2�

�˛ � r
�

�2
f .t/

�
D 0

The terminal condition for f is f .T / D 1. The solution is then

f .t/ D eC.T�t/; where C D r.1 � �/C
1 � �

2�

�˛ � r
�

�2
Thus, we conclude

V.t; x/ D eC.T�t/G.x/

solves the HJB equation. Observe that @xxV < 0, hence our  < 0 assumption is satisfied.
Given the value function, together with the maximizer of the Hamiltonian 6.1, optimal control is given

by the verification theorem:

��.t; x/ D
.˛ � r/

�2�
D a�

We conclude that optimal allocation is constant, which requires continuous (or roughly) adjustments to the
portfolio. An another way of looking at it is, given your current allocation and estimates for .˛; r; �/, you
can find your own risk aversian parameter. This might keep you aligned within some reasonable range.
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