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1 Preliminaries

Up until the section 7.1, where we will introduce the notions in the measure theory, we will rely on the
construction of probability theory for the countable state spaces. For this purpose, we will recall the core
definitions.

Let � be a countable set, endowed with a mapping p W � ! Œ0; 1� satisfying
P
!2� p.!/ D 1.

Introduce the probability distribution P from subsets of � to Œ0; 1� as

P .E/´
X
!2E

p.!/; E � �

(i) Conditional probability

P .AjB/´
1

P .B/
P .A \ B/

(ii) Bayes’ Rule
P .AjB/P .B/ D P .BjA/P .A/

(iii) Law of total probability

P .A/ D
X
i

P .A \ Bi / D
X
i

P .AjBi /P .Bi /

where [iBi D � and Bi ’s are disjoint. It is also useful in computations to note that

P .AjC/ D
X
i

P .A \ Bi jC/ D
X
i

P .AjBi \ C/P .Bi jC/

if Bi ’s are disjoint and C � [iBi .

(iv) We say fAigniD1 are mutually independent if for any 1 � j1 < � � � < jk � n

P
� k\
`D1

Aj`

�
D

kY
`D1

P
�
Aj`

�
We call a mapping X W �! R a random variable (RV). Let RX � R be the range of X , which is also

countable. Notice that any RV induces a distribution on RX , which we call the law of X as

LX .E/´ P
�
f! 2 � W X.!/ 2 Eg

�
´ P

�
X�1.E/

�
; E � RX

Expected of X is defined as

EŒX�´
X
!2�

X.!/P .!/ D
X
x2RX

xLX .x/

Let us go over a simple example of tossing two coins. Let � D fHH;T T;HT; TH g, with equal prob-
abilities (P is a uniform distribution). Define X.HH/ D 1 and 0 otherwise. Then LX .1/ D 1=4 and
LX .0/ D 3=4. Expected is

EŒX� D 1 � P .HH/C 0 � P .T T /C 0 � P .HT /C 0 � P .TH/ D 1 � LX .1/C 0 � LX .0/
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We can also define the expected value given an event, and decompose an expectation as follows,

EŒX� D
X
i

EŒX jBi �P .Bi /´
X
i

� X
!2�

X.!/P .!jBi /

�
P .Bi /

where [iBi D � and Bi ’s are disjoint.
We call fXngn2N a stochastic process with state space S, if for all n 2 N, Xn is a RV with values in S.

i.e. Xn W �! S. We refer to n 7! Xn.!/ as a path of X .
Notice that even if the state space has only two elements, there are 2n many potential paths of

.X1; X2; � � � ; Xn/. If the common probability space � has only few elements, then one cannot have rich
dynamics. Typically, we don’t model � and concentrate on the state space itself.

1.1 Total Variation Distance

Metric Theory is crucial to have in order to discuss local behaviors and understand convergence situations.
Defined for any arbitrary set, the space of all probability distributions can be endowed with a metric. There
are many choices, and we will present one that fits well for discrete state spaces;

Definition 1.1. Given two probability distributions �; � over the state space S, we introduce the total vari-
ation distance as

dTV.�; �/´ sup
A�S
j�.A/ � �.A/j (1.1)

Note that the total variation distance is defined for any measurable space (see Section 7.1). However, it
is typically not the most useful one as it does not require a metric on S and, hence, does not embed it.

Proposition 1.2. For a discrete state space S, we have the characterization as

dTV.�; �/ D
1

2

X
x2S
j�.x/ � �.x/j

Proposition 1.3. The dual representation of the total variation metric is;

dTV.�; �/ D
1

2
sup

nX
x2S

f .x/�.x/ �
X
x2S

f .x/�.x/ W max
x2S
jf .x/j D 1

o
1.2 Coupling

To understand the relations between two distributions on S, one can consider the product space S�S and all
distributions defined on it, with marginals corresponding to these two distributions. Any such distribution is
called a coupling, which serves as a powerful tool to study relations between distributions.

Definition 1.4. Given two distributions �; � on the state space S, we say a distribution ı on S � S is a
coupling of � and �, if

ı.� � S/ D �.�/ and ı.S � �/ D �.�/

Equivalently, we call random variables X; Y defined on a single probability space and taking values on S a
coupling of � and � if

LX D � .DW X � �/ and LY D � .DW Y � �/

Moreover, given two random variables X and Y , we say X 0; Y 0 is a coupling of X and Y , if X 0; Y 0 is a
coupling for LX ;LY .
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Example 1.5. Let us consider the easiest case where � D �. It is always possible to couple measures
independently, that is,

ı.A � B/´ �.A/�.B/

is always a coupling. In this simpler case, we can also set

ı0.A � B/´ �.A \ B/

Note that the coupling ı spreads out two distributions across S �S, whereas the coupling ı0 concentrates all
the mass on the diagonal. In the sense that if the first marginal A does not intersect with the second marginal
B , then the probability is 0. For a finite S, when representing the probabilities on S � S as a matrix, this
implies that all the mass is concentrated on the diagonal.

If we consider a notion of a distance defined by couplings, observe thatX
x;y2S

jx � yjı.x; y/ >
X
x;y2S

jx � yjı0.x; y/ D 0

In fact, the infimum over all couplings of the above quantity turns out to be a quite important notion of
distance, connected to the so-called optimal transport, and is widely used in more general settings.

To demonstrate the definition of coupling in terms of random variables, which is equivalent, on the one
hand take independent X and Y with distribution �, and on the other hand note that X;X is a coupling of
.�; �/ in this simple case. Exactly as above,

EŒjX � Y j� > EŒjX �X j� D 0

Note that we have discussed a notion of a metric in the example where it embeds the metric on the state
space S, which was the absolute value. It turns out that we can represent the total variation metric in terms
of couplings, which does not rely on any notion of distance over S;

Proposition 1.6.

dTV.�; �/ D inf
˚

P .X ¤ Y / W .X; Y / is a coupling of � and �
	

Let us note that, in the proof of the Convergence Theorem 2.47, we will construct couplings for Markov
Chains and use Proposition 1.6.

Example 1.7 (Distance of Poisson Distributions). Let �1; �2 be Poisson distributions with parameters �1 <
�2. Recall that the sum of independent Poisson random variables is again a Poisson random variable.
Therefore, we can couple �1; �2 by letting X � Poi.�1/ and Y � Poi.�2 � �1/ be independent, and
observing that .X1; X1 C Y1/ is a coupling. Thus, by 1.6,

dTV.�1; �2/ � P .X ¤ .X C Y // D P .Y > 0/ D 1 � e�2��1 � �2 � �1
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2 Markov Chains

The fundamental idea is to characterize the evolution of systems with uncertainty. Essentially, our interest is
to be able to model changes that are not known by certainty to us. Then, we can integrate those changes to
obtain a description for the future of the system. We remark that almost all sufficiently complicated systems
have an uncertain future. Thus, we need to model what we do not know, which is exactly the primary role
of probability theory.

The fundamental question of interest is, given that the system is in a particular state, can you predict
what will be the next state of the system. That is the information we want to integrate to obtain future
distributions. The system might be formed by subatomic particles, galaxies, banks, animals, etc. and one
can associate as many state variable as needed, such as position, momentum, balance sheet, connections etc.
which characterizes the system well enough that allows better predictions of their potential future states.

Markov Chains (MC) models systems where past states are irrelevant but only the current state of the
system determines the probabilities for the next state. Please see Wikipedia for a list of examples. To further
simplify, we will consider MCs that does not depend on time n either.

Definition 2.1. We say a stochastic process Xn with state space S is a temporally homogeneous discrete
Markov Chain with transition matrix p W S � S ! Œ0; 1�, if for any n 2 N and x; y; x0; � � � ; xn�1 2 S ,

P .XnC1 D yjXn D x;Xn�1 D xn�1; � � � ; X0 D x0/ D P .XnC1 D yjXn D x/ D p.x; y/

whenever conditional probabilities are defined: P .Xn D x;Xn�1 D xn�1; � � � ; X0 D x0/ > 0.
Moreover, any transition matrix p W S � S ! Œ0; 1� satisfying

P
y2S p.x; y/ D 1 is called stochastic

matrix, and any stochastic matrix can be associated with a Markov Chain.

In Section 3, we will introduce the concept of decision making and discuss reinforcement learning,
which provides many examples and motivation. For now, we will introduce preliminary examples for which
related quantities can be computed by hand.

Example 2.2 (Gambler’s Ruin). Consider a gambling game. At each round, you win $1 with probability
0:4 and lose $1 with probabiliy 0:6. Game ends when you lose all your money, or reach a fixed value N . To
model this as a MC, let S D f0; 1; � � � ; N g. Transition matrix is given by

p.x; x C 1/ D 0:4; p.x; x � 1/ D 0:6; 0 < x < N

p.0; 0/ D 1; p.N;N / D 1

[Write down the transition matrix for N D 3]

Example 2.3 (Ehrenfest Chain). Consider two boxes connected with a very small opening. Each box con-
tains some particles, and there are N particles in total. Let Xn be the number of particles in one of the
boxes. At each step, one particle passes through the opening, and the probability depends on the number of
particles in the box. The transition matrix is given by

p.i; i C 1/ D .N � i/=N; p.i; i � 1/ D i=N; p.i; j / D 0;

for all i 2 f0; � � � ; N g; and j 2 f0; � � � ; N g n fi � 1; i C 1g. In the long run, probability of Xn D i is given
by 1

2N

�
N
i

�
, independent of the initial condition.
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Example 2.4 (Inventory Chain). Let Xn denote the stock in the inventory at the end of day n. At the
beginning of the day, if the inventory is less or equal to s, we order enough to bring total stocks to S . Let
Dn be the demand throughout day n. Then the dynamics of Xn are given by

XnC1 D

(
.Xn �DnC1/

C if Xn > s
.S �DnC1/

C if Xn � s

Suppose now an electronic store sells a video game. Set S D 5; s D 1. Let the demand be

P .Dn D k/ D

8̂̂̂̂
<̂
ˆ̂̂:
0:3 if k D 0
0:4 if k D 1
0:2 if k D 2
0:1 if k D 3

Then the transition matrix is given by

0 1 2 3 4 5
0 0 0 0:1 0:2 0:4 0:3

1 0 0 0:1 0:2 0:4 0:3

2 0:3 0:4 0:3 0 0 0

3 0:1 0:2 0:4 0:3 0 0

4 0 0:1 0:2 0:4 0:3 0

5 0 0 0:1 0:2 0:4 0:3

Question. Suppose each unit solds for $12 and storage cost is $2. What is the long-run profit per day of this
inventory policy? How do we choose s and S to maximize profit?

Example 2.5 (Two-Stage Markov Chains). We can easily extend a Markov Chain such that XnC1 depends
on Xn; Xn�1. For example, consider a basketball player who makes a shot with following probabilities:

� 1=2 if he has missed the last two times

� 2=3 if he has missed one of his last two shots

� 3=4 if he hit both shots

Notice that the probability of next shot is given by the previous two. Therefore, let the state space be
S D fHH;MM;HM;MHg, H;M standing for Hit and Miss. The transition matrix is given by

HH HM MH MM
HH 3=4 1=4 0 0

HM 0 0 2=3 1=3

MH 2=3 1=3 0 0

MM 0 0 1=2 1=2

Suggested Exercises: (Durret, 3rd ed.) 1.1,1.2,1.3
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2.1 Multistep Transition Probabilities

In this section, we aim to show that

pm.x; y/ D P .XnCm D yjXn D x/

That is, the probability of getting from the state x to y inm-steps is given by them-th power of the transition
matrix. Let us first present two exercises;

Exercise. Show that

P .XnCm D yjXn D x/ D P .XnCm D yjXn D x;Xn�1 D xn�1; � � � ; X0 D x0/

Exercise. Suppose we have classifications of social classes as l; m; u, standing for lower, middle, and
upper class. Transition matrix p denotes the probability of social mobility at each generation. For example,
p.m; u/ denotes the probability that if the parents are in the middle class, children are in the upper class.
(i): Suppose your parents are in the middle class. What is the probability that you are in the upper class
and your children are lower class? (ii): What is the probability that your children are lower class, given that
your parents are middle class?

Theorem 2.6. The m-th step transition probability P .XnCm D yjXn D x/ is the m-th power of the
transition matrix p, computed at .x; y/.

Let us note that in our discrete setting, Chapman-Kolmogorov Equation is the standard matrix multiplication;

pmCn.x; y/ D
X
k2S

pm.x; k/pn.k; y/ (2.1)

Example 2.7 (Gambler’s Ruin). Recall the example and its transition matrix. Set N D 4. By using
computers, we can easily compute the 20-th power of the transition matrix, which gives us the probability
distributions after 20 step starting at each state:

p20 D

0BBBBBB@
0 1 2 3 4

0 1:0 0 0 0 0

1 0:87655 0:00032 0 0:00022 0:12291

2 0:69186 0 0:00065 0 0:30749

3 0:41842 0:00049 0 0:00032 0:58437

4 0 0 0 0 1:0

1CCCCCCA
Notice that with very high probability the game ends with either 0 or 4. Later, we will show that the limit
pn as n!1 exists.

2.2 Strong Markov Property

We defined a Markov chain as being independent of the past, given Xn for some n. In this section, we
will prove that time can, in fact, be randomized. To achieve this, we introduce the important concept of a
stopping time;1

Definition 2.8. We say T W �! N [ f1g is a stopping time with respect to Xn, if fT D ng is determined
by fX0; � � � ; Xng.

1Once we introduced the measure theoretic probability in section 7.1, we will define stopping times rigorously in section 7.6.
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Note that the definition depends on the stochastic process Xn, and aims to identify random times that an
event occurs. A typical example is ”hitting time”, where Xn becomes a particular state for the first time. In
this case, for example, fT D ng corresponds to all paths that the chain hits this particular state at time n.
One can imagine how varying paths might change the hitting time of this particular state.

Theorem 2.9 (Strong Markov Property). Let T be a stopping time with respect to the Markov chain Xn.
For any k 2 N; x 2 S, given fT <1; XT D xg, XTCk is independent of fX0; � � � ; XT g. Moreover,

P .XTCk D yjT <1; XT D x/ D p
k.x; y/

Remark 2.10. For continuous Markov processes, the strong Markov property and the Markov property are
not equivalent. A standard example is a process that waits until an exponential clock rings and then moves
in one direction at a constant speed.

To see that it is Markov, note that given fXt D 0g, distribution of XtCs is the same as the distribution
of Xs , due to the memoryless property of the exponential distribution. Given fXt ¤ 0g, the distribution of
XtCs is a Dirac mass at Xt C s.

To see that it is not strong Markov, consider the stopping time � D infft > 0 W Xt ¤ 0g. Then, given
X� D 0, X�Ct has the distribution Dirac mass at t , which is not the same as the distribution of Xt given
X0 D 0.

2.3 Classification of States

In this section, we will classify states to distinguish whether or not MC visits them indefinitely. Let us
introduce the notation Px.A/ ´ P .AjX0 D x/, and let Ex denote the expectation under the measure Px .
Introduce the return time;

Ty ´ minfn � 1 W Xn D yg; and �xy ´ Px.Ty <1/

Ty is a stopping time because

fTy D ng D fX0 ¤ y; � � � ; Xn�1 ¤ y;Xn D yg

and thus fTy D ng is determined by fX0; � � � ; Xng. Let us also introduce the k-th return time, which is also
a stopping time,

T 1y ´ Ty ; T ky ´ minfn > T k�1y W Xn D yg; k � 2

Because of the strong Markov property, it holds that [Exercise]

Px.T
k
y <1/ D �xy�

k�1
yy

Exercise. Argue that Ky ´ maxfn � 1 W Xn D yg is not a stopping time.
Before we continue to the task of classification of states, let us first prove an estimate involving the

return time;

Lemma 2.11. Suppose Px.Ty � k/ � a > 0 for all x 2 S. Then

Px.Ty > mk/ � .1 � a/
m

The main definitions that we interested are as follows;

Definition 2.12. We say y 2 S is transient if �yy < 1 and recurrent if �yy D 1.

Definition 2.13. We say x communicates with y, and denote it by x ! y, if �xy > 0.

9



Definition 2.14. A set A � S is called closed if x 2 A and y … A, then p.x; y/ D 0.

Definition 2.15. A set A � S is called irreducible if x; y 2 A then x ! y.

We are primarily interested in understanding recurrent versus transient states. This will yield the long
term domain of the process, in the sense that, limn!1 pn.x; y/ D 0 for any transient state y. Also, note
that Py.T

k
y <1/ D �kyy ! 0 as k !1 for a transient state y. That is, probability of observing a transient

state many times is exponentially small.

Example 2.16. Recall Gambler’s Ruin example. States 0 and N are recurrent, while all other states are
transient. Closed sets are f0g; fN g; f0;N g;S. Closed and irreducible sets are f0g and fN g.

Suggested Exercises: (Durret, 3rd.) Exercices 1.5,1.6,1.7

Lemma 2.17. If x ! y and y ! z, then x ! z. That is,! is a transitive relation.

Due to the transitivity, it is important to define Rx ´ fy 2 S W x ! yg for x 2 S. This is because, any
y ! z, z 2 Rx if y 2 Rx , and hence forms a closed set. Note that, if a set A is not closed, then there exists
y 2 A; z 2 Ac where y ! z. The next theorem, and its corollary are crucial for classifying states.

Theorem 2.18. If �xy > 0 and �yx < 1, then x is transient.

Corollary 2.19. If x is recurrent and x ! y, then �yx D 1.

Now, we state the central theorem of this section. The reason is that it implies the closed and irreducible
set Rx we introduced has states that are all recurrent, provided it is finite. This will immediately yield the
following decomposition theorem.

Theorem 2.20. If set A � S is finite, closed and irreducible, then all states in A are recurrent.

Before we move on to the proof of Theorem 2.20, we will first use it to show the decomposition theorem.
This theorem tells us that it suffices to study closed and irreducible sets if the Markov chain is finite.

Theorem 2.21 (Decomposition Theorem). If the state space S is finite, then it can be written as a disjoint
union S D T [R1 [ � � � [Rk where T is the set of transient states, and Ri ’s are closed irreducible sets of
recurrent states.

Now, we will study the number of visits to a particular state and its connections to the returning time to
prove the Theorem 2.20. First, let us recall a well known relation;

Lemma 2.22. For any random variable X taking values in N,

EŒX� D

1X
kD1

P .X � k/ (2.2)

Define Ny be the number of visits to y at times n � 1. That is

Ny ´

1X
nD1

1fXnDyg

Note that it is closely connected to returning time;

fNy � kg D fT
k
y <1g; and ExNy D

1X
nD1

Px.Xn D y/ D

1X
nD1

pn.x; y/ (2.3)

and by relying on this, we further have the following lemma;

10



Lemma 2.23.
ExNy D

�xy

.1 � �yy/
; 8x; y 2 S (2.4)

This allows us to have an another characterization of recurrent states, which is a direct corollary of (2.4);

Theorem 2.24. A state x 2 S is recurrent if and only if
P1
nD1 p

n.x; x/ D ExNx D1.

Having this characterization at hand, we can now prove the two main lemmas;

Lemma 2.25. If x is recurrent and x ! y, then y is recurrent.

Lemma 2.26. In a finite closed set, there has to be one recurrent state.

Suggested Exercise: (Durret, 3rd ed.) 1.8

2.4 Stationary Distributions

As the distribution of a Markov chain evolves over time, modeling our knowledge about where the chain
will be in the future, information about the initial starting point diminishes. In fact, we will learn that this
distribution converges to a stationary point. Thus, in this section, we will explore the meaning of a stationary
distribution and argue its well-posedness.

Definition 2.27. Let � be a probability measure on the state space S. We say � is a stationary distribution
if

�.x/ D
X
y2S

�.y/p.y; x/; 8x 2 S (2.5)

Remark 2.28. (i): Summation in (2.5) represents the evolution of the distribution � under the transition
matrix of the Markov Chain. That is why � satisfying (2.5) is called a stationary distribution.

(ii): Note that, LXn , the law of Xn, is also a probability measure on the state space S. We may refer to
LX0 as a stationary distribution, if P induces a stationary distribution.

(iii): If the state space is finite as S D fx1; : : : ; xkg, then we can write (2.5) in the matrix form;

�p D �

where � is taken as a row vector. In this case, the law of the MC is taken as ŒP .X0 D x1/ � � �P .X0 D xk/�.
(iv): We can discretize a distribution. Instead of a distribution � evolving, consider N many ”particles”

with states fx1; : : : ; xN g such that
1

N

NX
kD1

ıxk is close to �

where ı� is the Dirac delta distribution. Then, one can imagine that these particles are evolving as a MC
starting from these states. Each particle will change state, however, their empirical distribution 1

N

PN
kD1 ıXk

will remain almost undisturbed.

Example 2.29. Lets explicitly solve a stationary distribution�
�1 �2

� �0:6 0:4

0:2 0:8

�
D
�
�1 �2

�
Noting that �1 C �2 D 1 yields �1 D 1=3; �2 D 2=3.

11



Example 2.30 (General two state transition probability).�
�1 �2

� � 1 � a a

b 1 � b

�
D
�
�1 �2

�
The solution is given by

�1 D
b

aC b
; �2 D

a

aC b

In general, it is not easy to compute the stationary distribution. We will work out some particular cases,
and the first one is when the transition matrix is also a stochastic matrix when time is reversed;

Definition 2.31. A transition matrix p is called doubly stochastic if
P
x2S p.x; y/ D 1.

Theorem 2.32. If p is a doubly stochastic transition probability for a Markov chain with N states, then the
uniform distribution, �.x/ � 1=N , is a stationary distribution.

Example 2.33 (Symmetric Reflecting Random Walk on the Line). Set S D f0; � � � ; Lg. Markov chain
moves left or right (or stay on the boundary) with equal probability. For example, if L D 4 the transition
matrix is

0 1 2 3 4
0 0:5 0:5 0 0 0

1 0:5 0 0:5 0 0

2 0 0:5 0 0:5 0

3 0 0 0:5 0 0:5

4 0 0 0 0:5 0:5

and as it is doubly stochastic, the stationary distribution is the uniform distribution.

2.4.1 Existence of stationary distribution

We now argue the existence of a stationary distribution. Here we state the result for finite state space, and
later in Section 2.9 we will show how to cover the countable case.

Theorem 2.34 (Existence of stationary distribution). Assume S is finite. For any recurrent x 2 S, define

�x.y/´
X
n�1

Px.Xn D y; Tx � n/; 8y 2 S

Then �x.x/ D 1 and

�x.y/´
�x.y/

ExŒTx�

is a stationary distribution.

Remark 2.35. Note that we only used finiteness to normalize at the end. Existence of a measure (not
normalized to have the mass 1) is always guaranteed when there is a recurrent state. To remove finiteness
assumption, one needs to assume all states satisfy ExŒTx� < 1, where such states are called positive
recurrent states.

12



2.4.2 Uniqueness of stationary distribution

Theorem 2.36 (Uniqueness of stationary distribution). If S is finite and Markov chain is irreducible, then
there exists a unique stationary distribution given by

�.x/ D
1

ExŒTx�
> 0; 8x 2 S (2.6)

Remark 2.37. (i): Note that we only used finiteness to have ExŒTx� < 1. The proof actually shows that
any stationary measure (without requiring the total mass to be 1) has to be a constant multiple of �x .

(ii): Recall the decomposition theorem 2.21. Each disjoint component has its own unique stationary
distribution, except the set of transient states.

Suggested Exercises. Durrett, 3rd edition. 1.10, 1.12.

2.5 Detailed Balance Condition

In this section, we will explore the case where the Markov Chain is, in some sense, symmetric in time.
We will explain this symmetry in the following subsections. We characterize this case by its stationary
distribution, which is said to satisfy the following condition;

Definition 2.38. A distribution � is said to satisfy the detailed balance condition if

�.x/p.x; y/ D �.y/p.y; x/; 8x; y 2 S (2.7)

This condition is stronger than being stationary, because if � satisfies (2.7), thenX
y2S

�.y/p.y; x/ D
X
y2S

�.x/p.x; y/ D �.x/

which is exactly the condition of being a stationary distribution. Altough it is not typically satisfied, in some
cases, it could be much simpler to solve (2.7). We will work it out for two cases below.

Example 2.39 (Birth and Death Chains). Set S D fl; l C 1; � � � ; m � 1;mg. We say a Markov chain is a
birth and death chain if jumps can occur only to adjacent states. That is, p.x; y/ D 0 if jx � yj > 1. Let

p.x; x C 1/ D ux; p.x; x � 1/ D dx; p.x; x/ D 1 � .ux C dx/

where dl D um D 0. Since jumps can occur only to adjacent states, detailed balance condition becomes

�.x/ux D �.x C 1/dxC1 or
�.x C 1/

�.x/
D

ux

dxC1

Therefore,
�.x/

�.l/
D
�.l C 1/

�.l/
� � �

�.x/

�.x � 1/
D

ul

dlC1
� � �
ux�1

dx
; x > l

Considering the normalization condition,

1 D

mX
xDl

�.x/ D �.l/
�
1C

mX
xDlC1

ul � � �ux�1

dlC1 � � � dx

�
DW �.l/Z

and we conclude

�.l/ D
1

Z
; �.x/ D

1

Z

�
ul � � �ux�1

dlC1 � � � dx

�
is a stationary distribution satisfying the detailed balance condition. Notice that we implicitly required
dx > 0 for all x. Requiring ux > 0 for all x would similarly work.

13



Example 2.40 (Random Walks on Graphs). Consider a graph with finite vertices V and symmetric adja-
cency matrix A W V � V ! f0; 1g which encodes which vertices are connected (undirected). Degree of
x 2 V is defined as the number of connected vertices as

d.x/´
X
y2V

A.x; y/

A random walk transitioning uniformly over adjacent vertices is characterized by the transition matrix

p.x; y/ D
A.x; y/

d.x/

The corresponding detailed balance condition is

�.x/
A.x; y/

d.x/
D �.y/

A.y; x/

d.y/

Therefore, since A is symmetric,

�.x/ D
d.x/P
y2V d.y/

is a stationary distribution satisfying detailed balance condition.

Suggested Exercises. Durrett, 3rd edition. 1.11.

2.5.1 Reversibility

In this section, we will characterize the transition matrix of a Markov Chain reversed in time.

Theorem 2.41. Consider a Markov chain with transition matrix p and stationary distribution � . Suppose
that the initial distribution is equal to � , i.e. P .X0 D x/ D �.x/. Fix n and set OXm D Xn�m for
0 � m � n. Then OX is a Markov chain with transition matrix

Op.x; y/ D p.y; x/
�.y/

�.x/
D

�.y/p.y; x/P
z2S �.z/p.z; x/

(2.8)

Remark 2.42.
(i): (2.8) is called the dual transition probability. Although Op is always well-defined, it is important to

note that we must start the original chain from its well-posed stationary distribution to ensure that the future
distribution is independent of the initial condition, and hence the reversed chain OX is also a Markov Chain.

(ii): If the Markov chain satisfies the detailed balance condition, then Op.x; y/ D p.x; y/.
(iii): If the stationary distribution is uniform as in the case of doubly stochastic transition matrices, then

Op.x; y/ D p.y; x/.

2.5.2 Kolmogorov Cycle Condition

We will only state this characterization of the detailed balance condition. See Durrett [3] for the proof. In
words, the detailed balance condition is equivalent to being time reversible on any cycle of states.

Theorem 2.43. For an irreducible Markov chain with state space S , there exists a stationary distribution
satisfying detailed balance condition if and only if, given any cycle x0; x1; � � � ; xn D x0 it holds

nY
iD1

p.xi�1; xi / D

nY
iD1

p.xi ; xi�1/

14



2.6 Limit Behavior

In this section, we study the limit behavior of pn.x; y/. For a transient state y, since ExNy DP1
nD1 p

n.x; y/ < 1 by Theorem 2.24, we know that pn.x; y/ ! 0 for any x 2 S. Therefore, we
are interested in closed and irreducible components containing recurrent states.

Expectation is that the distribution of Xn to converge to the unique stationary distribution as n tends
to infinity. However, one needs to take care of periodicity, which is the only possibility that prevents the
convergence. For example, consider the transition matrix on S D f0; 1g

p.0; 1/ D 1; p.1; 0/ D 1; p.0; 0/ D 0; p.1; 1/ D 0

It is obvious that �.0/ D �.1/ D 1=2 is the stationary distribution. However, note that pn.0; 0/ D 0 if n is
odd and pn.0; 0/ D 1 if n is even. Therefore, the limit over n simply does not exists.

To resolve this issue, for a recurrent state x, define

Ix ´ fn � 1 W p
n.x; x/ > 0g

and set dx , the period of x, to be the greatest common divisor of Ix . Since
P1
nD1 p

n.x; x/ D 1, Ix is
non empty and dx is well defined. We first show that the periodicity is in fact a property of an irreducible
component;

Lemma 2.44. If x ! y and y ! x, then x and y has the same period.

Definition 2.45. We say a recurrent state is aperiodic if dx D 1. We say an irreducible Markov chain is
aperiodic, if one hence all states are aperiodic.

We will now work out the key technical lemma to use the aperiodicity in the the convergence analysis;

Lemma 2.46. If x is aperiodic, then there is n0 2 N such that n 2 Ix for all n � n0.

2.6.1 Convergence Theorem

Please review the first section on total variation distance and coupling for the proof of the following theorem.

Theorem 2.47 (Convergence). Suppose a finite Markov chain is irreducible and aperiodic with the station-
ary distribution � . Then,

lim
n!1

pn.x; y/ D lim
n!1

Px.Xn D y/ D �.y/; 8x; y 2 S

Remark 2.48.
(i): We know that states of finite irreducible chain has to be recurrent. (See Theorem 2.20) Therefore,

we skip to argue that O�..x; y// D �.x/�.y/ is an stationary distribution for Op. One can easily argue that
O� is a stationary distribution for Op. Then, the Theorem 2.60 implies all states are positive recurrent, and in
particular recurrent.

To sum up, with finiteness assumption, we actually do not need to assume existence of the stationary
distribution. We can drop the finiteness assumption in the convergence theorem, but then existence of
stationary distribution is essential.

(ii): By controlling the probability P . OT > n/, one can argue that the convergence is exponentially fast.
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2.7 Exit Distributions & Exit Times

In this section, we will study the probability of hitting a set of states. This exploration is motivated by
various applications. For instance, consider a stochastic process that models the value of a portfolio of
financial assets; an investor naturally wants to know the probability that this value reaches a target level
(indicative of a successful retirement) before it drops to an unsustainable level (leading to bankruptcy).
Similar questions arise in physics (probability of reaching a critical energy level), biology (probability of
survival of a species), and other fields.

Definition 2.49. For a given A � S, we define the exit time as

VA´ inffn � 0 W Xn 2 Ag

If the set A is a singleton fag, we write Va ´ Vfag.

Theorem 2.50. Consider a Markov chain with state space S. Let A;B � S such that C D S n .A [ B/ is
finite. If Pc.VA ^ VB <1/ > 0 for all c 2 C , then h.x/´ Px.VA < VB/ is the unique bounded solution
to

h.a/ D 1; 8a 2 A; h.b/ D 0; 8b 2 B; and h.c/ D
X
y2S

p.c; y/h.y/; 8c 2 C (2.9)

Example 2.51 (Gambler’s Ruin). Recall that the state space is f0; � � � ; N g, where p.x; x C 1/ D p and the
Markov chain stops at 0 or N . Let

h.x/ D Px.VN < V0/

be the probability of winning. To find this explicitly, we will solve (2.9);

h.x/ D ph.x C 1/C .1 � p/h.x � 1/

Rearrange this equation to get,

h.x C 1/ � h.x/ D
1 � p

p
.h.x/ � h.x � 1// D � � � D

�1 � p
p

�x
h.1/

Now, sum over x to obtain the value of h.1/;

1 D h.N / � h.0/ D h.1/

N�1X
xD0

�1 � p
p

�x
D h.1/

8<:
1�. 1�p

p
/N

1� 1�p
p

if p ¤ 1=2

N if p D 1=2

Similarly, summing only up to x, and using the value of h.1/, we conclude

Px.VN < V0/ D

8<:
1�. 1�p

p
/x

1�. 1�p
p
/N

if p ¤ 1=2

x
N

if p D 1=2

Now, it is also quite important to understand the expected time to hit a subset of states. For this purpose,
we will now work out the expected of any transition function up to the hitting time;

Theorem 2.52. Consider a Markov chain with state space S. Let A � S such that C D S nA is finite, and
f W S � S ! R is non-negative. If Pc.VA <1/ > 0 for all c 2 C , then

g.x/´ Ex

� VAX
mD1

f .Xm�1; Xm/

�
D Ex

� 1X
mD1

f .Xm�1; Xm/1fVa�mg
�
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Figure 1: The figure shows the plot of Px.VN < V0/ for N D 100 and p 2 f0:4; 0:49; 0:5; 0:51; 0:6g.

is the unique bounded solution to

g.a/ D 0; 8a 2 A; g.c/ D
X
y2S

p.c; y/f .c; y/C
X
y2S

p.c; y/g.y/; 8c 2 C (2.10)

In particular, for f � 1, we have g.x/ D ExŒVA�.

Example 2.53 (Gambler’s Ruin). Let us present the expected time of the game, that is when A D f0;N g,

ExŒVA� D

8<:x.N � x/ if p D 1=2
x

1�2p
�

N
1�2p

1�. 1�p
p
/x

1�. 1�p
p
/N

if p ¤ 1=2

The case of p D 1=2 can be derived from g.x/ D 1C .1=2/g.x C 1/C .1=2/g.x � 1/ by rearranging and
telescoping sum. The case of p ¤ 1=2, although doable, is tedious to derive and we will omit. However, it
is straightforward to check the condition (2.10) for the above solution.

Lets look at check some limit behaviors. If the winning probability p ! 0, then

Px.VN < V0/ D
1 � .1�p

p
/x

1 � .1�p
p
/N
! 0 and ExŒVA�! x

which is expected. If p > 1=2 and the target capital N !1,

Px.VN < V0/! 1 �
�1 � p

p

�x
and ExŒVA�!1

That is, when winning probability is in favor, reaching infinitely large capital is possible. Not with proba-
bility one but strictly positive. Of course, expected time blows up to infinity in this case. On the other hand,
if p < 1=2, then

Px.VN < V0/! 0 and ExŒVA�!
x

1 � 2p

meaning that there is no chance to achieve infinitely large target.
As it is somewhat counter-intuitive, let’s look at the case p D 1=2, N D 100 and we start from x D 99.

Then P99.V100 < V0/ D 99=100, which is quite high as expected. However, notice that E99ŒVf0;100g� D 99.
That is, just to hit 100 (or sometimes 0) starting from 99, one has to take 99 steps on average.

Suggested Exercises. Durrett, 3rd edition. 1.45, 1.49, 1.57, 1.62, 1.67.
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Figure 2: The figure shows the plot of ExVA for N D 100 and p 2 f0:4; 0:49; 0:5; 0:51; 0:6g.

2.8 Ergodic Theorem

Theorem 2.54 (Ergodic Theorem). Suppose the Markov chain is irreducible and has a stationary distribu-
tion � . Let f W S ! R be integrable with respect to � , that is,

P
x2S jf .x/j�.x/ <1. Then

lim
n!1

1

n

nX
kD0

f .Xk/ D E� Œf �´
X
x2S

f .x/�.x/

almost surely under any initial distribution.

Theorem 2.55 (Asymptotic Frequency). Consider an irreducible Markov chain where all the states are
recurrent. Define the number of visits to x up to time n,

Nn.x/´

nX
mD0

1fXmDxg

Then,

lim
n!1

Nn.x/

n
D

1

ExŒTx�
almost surely.

Remark 2.56. (i): Note that, if we set f .y/ D 1fyDxg for some x 2 S , the Ergodic theorem implies

Nn.x/

n
! �.x/ D

1

ExŒTx�

as expected. However, we do not need the existence of the stationary measure for the asymptotic frequency
to hold.

(ii): Taking the expectation and interchanging the limit yields (Bounded Convergence Theorem)

1

n

nX
mD0

pm.x; y/!
1

EyTy

Therefore, even without aperiodicity, the average of pm converges. In case � exists, it is the right limit.

Suggested Exercises. Durrett, 3rd edition. 1.21, 1.39.
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2.9 Existence and Uniqueness in Countable State Space

In this section, we state the existence and uniqueness theorems without the finiteness assumption. We invite
the reader to review their proofs in the finite case, as we have already presented arguments suitable for the
countable case.

Let us start with the following proposition first,

Proposition 2.57. If � is a stationary distribution, then each state x with �.x/ > 0 is recurrent.

Corollary 2.58. An irreducible Markov chain where all states are transient cannot have a stationary distri-
bution.

Recall that previously we have used the finiteness assumption to have ExŒTx� < 1. In the countable
case, we will instead assume this;

Definition 2.59. A recurrent state x is called positive recurrent if ExŒTx� <1, and is called null recurrent
if ExŒTx� D1.

Theorem 2.60 (Existence and Uniqueness). Suppose the Markov chain is irreducible. It has a stationary
distribution � if and only if all states are positive recurrent. Moreover, if a stationary distribution exists,
then it is unique and

�.x/ D
1

ExŒTx�

Example 2.61 (Reflecting Random Walk). Let S D N. Let the transition matrix be

p.x; x C 1/ D p; p.x; x � 1/ D 1 � p; 8x � 1; p.0; 0/ D 1 � p

It is obviously irreducible for 0 < p < 1. Since p.0; 0/ > 0, it is aperiodic. By the Lemma 2.44, the whole
chain is aperiodic.

Case p < 1=2: Let us recall the detailed balance condition for this Markov chain,

p�.x/ D .1 � p/�.x C 1/; 8x � 0

That is,
�.x/ D

� p

1 � p

�x
�.0/

Since p < 1=2,

Z´
X
x�0

� p

1 � p

�x
D

1 � p

1 � 2p
<1

Therefore, �.0/ D 1=Z and we obtained a stationary distribution. The Convergence Theorem 2.47 implies
Px.Xn D y/ ! �.y/. (See the following remark for the finiteness assumption.) Moreover, Theorem 2.60
yields,

E0ŒT0� D
1

�.0/
D

1 � p

1 � 2p

Case p > 1=2: In this case, we will argue that 0 is a transient state. Since Markov chain is irreducible,
then by the Lemma 2.25, all states are transient. Notice that return time T0 and exit time V0 coincide if we
do not start from state 0. Therefore,

�x0 D Px.T0 <1/ D Px.V0 <1/
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We have already computed in the Example 2.51 that

Px.V0 < VN / D 1 � Px.VN < V0/ D

8<:1 �
1�. 1�p

p
/x

1�. 1�p
p
/N

if p ¤ 1=2

1 � x
N

if p D 1=2

which implies

�x0 D Px.V0 <1/ D lim
N!1

Px.V0 < VN / D
�1 � p

p

�x
< 1

On the other hand, obviously �0x > 0. Then the Theorem 2.18 implies 0 is transient. Now, the Corollary
2.58 implies there exists no stationary distribution.

Case p D 1=2: By similar arguments as in the previous case,

Px.V0 <1/ D 1; 8x 2 N

Now,

P0.T0 <1/ D .1=2/P0.V0 <1jX1 D 1/C .1=2/P0.T0 <1jX1 D 0/ D .1=2/ � 1C .1=2/P0.T0 <1/

which means P0.T0 < 1/ D 1. Since the chain is irreducible, all states are recurrent. However, we will
argue that states are in fact null recurrent. To do so,

E1V0 � E1Vf0;N g D 1.N � 1/!1

hence E1V0 D1. Similarly,

E0ŒT0� D .1=2/E0ŒV0jX1 D 1�C .1=2/E0ŒT0jX1 D 0� D1

Since the chain is irreducible, and 0 is null recurrent, there cannot be a stationary distribution by the Theorem
2.60.

As a side note, symmetric random walk in one and two dimensions are recurrent. However, in three
dimension it becomes transient. Roughly speaking pn.x; x/ � 1=nd=2 where d is the dimension, and
hence is not summable for d D 1; 2.

Suggested Exercises. Durrett, 3rd edition. 1.70, 1.74, 1.75.
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3 Steps to Reinforcement Learning

3.1 Markov Decision Process

In this section, we will learn to formalize decision making where the underlying dynamics are modeled as a
Markov Chain. This is the first basic step toward Reinforcement Learning.

It is important to emphasize that every system can be modeled as Markovian. Although it might not
always be useful, particularly if the state space is chosen too small, many systems can indeed be well
approximated. To motivate this idea, consider a simple example where X0; X1 2 f0; 1g independently and
uniformly, and X2 D 1 if .X1 D 1;X0 D 1/ and 0 otherwise. If an agent, such as a robot, can only observe
X1, then

P .X2 D 1jX1 D 1/ D
1

2
; P .X2 D 0jX1 D 0/ D 1

This is what the agent approximates from the real dynamics. In the agent’s experience, the above perfectly
defines the dynamics, and the agent can learn to behave optimally. Although the dynamics of X2 are com-
pletely deterministic with sufficient information (i.e., .X0; X1/), the agent approximates it by Markovian
dynamics. Although this approximation does not guarantee useful optimal solutions, it can be done more or
less independent of the system’s nature. Additionally, this simple example also motivates that the choice of
the state space plays a role in how well we can approximate.

Let us define what a Markov Decision Process (MDP) is, and then we will present various examples.

Definition 3.1. A Markov Decision Process is a 4-tuple .S;A; P;R/ where S is the state space of the
Markov chain, A is the set of actions, P W A � S � S ! Œ0; 1� determines the transition probabilitiesX

y2S
Pa.x; y/ D 1I

and R W S �A! R is the immediate reward function.

� Maneuvering a helicopter [continuous state & continuous actions]
– The state space might include parameters of its motor and rotors, wind speed/direction, height, etc.
– Dynamics are determined by the real world.
– Actions are determined by the controller of a helicopter.
– The objective might be to learn to make complicated maneuvers, where the reward could be follow-
ing given paths and the cost might be a crash.

� Playing backgammon [discrete state & discrete actions]
– The state space could be the positions of checkers.
– Dynamics are deterministic given the result of the dice, however, they appear random to the player!
– Actions follow the rules of backgammon.
– The objective is positive for winning and negative for losing.

� Other games
– One can think of games with discrete action spaces but continuous state spaces (like resources).

� Controlling robots
– Examples include humanoid robots learning to walk, robotic arms making surgical moves, and cars
learning to self-drive. There are many different robots/machines that can learn to act optimally.

� Cooling systems
– Google used reinforcement learning to cool down massive data servers. The objective was to min-
imize energy consumption while maintaining safety protocols, achieving a reduction in consumption
by 40%.
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� Traffic control
– Traffic optimization can be achieved by controlling traffic lights, which can again be learned through
reinforcement learning methods.

� Finance
– One can learn to understand price actions and how to behave optimally, deciding buy/sell actions in
an optimal way.

Now, let us continue to detail the MDP. First, since transition probabilities depend on the actions taken,
we need to provide a future strategy to be able to define a Markov Chain. To achieve this, let

A´
˚
˛ W N � S ! A

	
be the set of so-called Markov policies (or controls). One can consider different choices for the set of
admissible controls; for example, it can depend on past states. However, in our simplified setting, it can
be shown that the optimal policy takes this form. Given a strategy (or policy, control) ˛ 2 A, we define a
Markov Chain by

P .XnC1 D yjXn D x/ D P˛.n;x/.x; y/

We denote this chain by X˛n , representing the future distribution of the state process under the strategy ˛.
Next, to discuss which strategy is ”optimal”, we need to define the objective of the agent. To do so, we

assign a value (or cost) for each strategy as follows;

U.x; ˛/´ Ex

hX
n�0

�nR.X˛n ; ˛.n;X
˛
n //
i

where 0 < � < 1 is the discount factor. Note that if R is bounded, � essentially sets a horizon for the
problem. Indeed, if we do not discount, this expectation would not even depend on the state x.

We are ready to introduce the value function, which plays a crucial role as it satisfies a dynamic backward
equation and allows us to construct optimal policies.

V.x/ D sup
˛2A

U.x; ˛/ (3.1)

The equation that the value V satisfies is derived as follows:

Ex

�X
n�0

�nR.X˛n ; ˛.n;X
˛
n //

�
D R.x; ˛.0; x//C Ex

�X
n�1

�nR.X˛n ; ˛.n;X
˛
n //

�
D R.x; ˛.0; x//C �Ex

�X
n�0

�nR.X˛nC1; ˛.nC 1;X
˛
nC1//

�
D R.x; ˛.0; x//C �

X
z2S

P˛.0;x/.x; z/Ez

�X
n�0

�nR.X˛n ; ˛.nC 1;X
˛
n //

�
Here, X˛n in the last expectation is using the shifted control, starting from time 1 instead of 0. Considering
the supremum over controls ˛, we obtained the Bellman Equation;

V.x/ D sup
a2A

�
R.x; a/C �

X
z2S

Pa.x; z/V .z/

�
(3.2)
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Theorem 3.2. Suppose the reward function R is bounded. Then V defined in (3.1) is the unique bounded
solution to the Bellman equation (3.2). Moreover, if there exists I� W S ! A such that

I�.x/ 2 arg max
a2A

�
R.x; a/C �

X
z2S

Pa.x; z/V .z/

�
Then ˛.n; x/´ I�.x/ is the stationary optimal control.

Remark 3.3. (i): Although it is impossible in practice, notice that one can iterate the contraction mapping
T , starting from any initial guess for V , and obtain the value function hence the optimal control.

(ii): It is important to note that Bellman equation the (3.2) is not only optimizing the immediate reward,
but considers the future potential values. Of course, we cannot just take actions to maximize our immediate
reward and it is reflected in the equation.

Example 3.4 (Consumption Problem). Suppose an agent has a random capital Xn, and at each time the
agent consumes some amount of it while investing the rest. Suppose the control denotes the amount of con-
sumption. Let R.x; a/ be reward function, or utility of agent for having x amount of money and consuming
a amount of money. Agent might aim to optimize

Ex

�X
n�0

� 1

1C r

�n
R.X˛n ; ˛.n;X

˛
n //

�
where r is the interest rate. Notice that, even if the dynamics of Markov chain is independent of the control,
Bellman equation would be

V.x/ D sup
a2A

�
R.x; a/C �

X
z2S

p.x � a; z/V .z/

�
3.2 Reinforcement Learning

The concept of Markov Decision Process motivates and teaches us how to act optimally given the parameters
of the problem. However in real life, we almost never know what the parameters are. We might not know
how the process transitions, or what are the rewards. For example, if you are playing chess, what is the
reward of transitioning from one state to another? ”Values” of pieces might guide you, but of course it is
only a primitive guide, mastering chess is way harder than learning the assigned values of pieces. Another
example that many of us are familiar is video games with unfamiliar dynamics. As a player, we have to
learn how we move.

To attack this problem, Reinforcement Learning (RL) defines a concept of player. We will not get into
the technical details, but in words, there are sequences of observations, sequences of potential actions (or
strategies) and parameters that player is learning. The choices for what player is learning is endless, it can
include transitions and rewards, but beyond that can include estimating other player’s behavior, communi-
cations, useful embeddings of states, and many more depending on the complexity of the problem. We will
consider one of the simplest cases where the player tries to learn a value associated to a pair of state and
action .x; a/. This is typically referred as Q-learning. Moreover, we assume that there are finitely many
states and actions with managable cardinalities. To approximate continuous state or action spaces, one needs
to use function approximations like neural networks.

Let us also point out that randomization (or exploration) is the key element of learning. The whole life
emerges through molecules exploring infinite amount of structural designs (proteins), presenting the self-
replicating long term stable solutions. In our context, since we start by not knowing the Q-function, we
shouldn’t solely rely on it to construct our strategies and need to introduce ways of promoting exploration.
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Now, we discuss a generic structure of an algorithm to learn the Q-function below. Here, we assume
that we don’t know the transition probabilities P or the reward function R, but observe it as we interact with
the environment.2

� Initially choose an arbitrary strategy that you will do at any state x. It is better to choose one with
random actions instead of deterministic ones, so that you can explore.

� The aim is to approximate a useful Q. There are two general paths (with many potential variations);
– Monte Carlo: Generate a lot of paths from your learned model, set Q as the average of rewards you
get. (Advantage: versatile, Disadvantage: large variance)
– TD: Generate only one step from your learned model, set

Q.x; a/ Q.x; a/C a.RC �Q.z; a0/ �Q.x; a//

if we started from state x, take the action a, ended up in state z, got a reward R, and planned to use
a0. Note that this approach exploits the Markov structure. (Advantage: Low variance, Disadvantage:
Requires some structure)

� GivenQ.x; a/, update your strategy to be more likely as arg maxaQ.x; a/. But not exactly! Because
we don’t have the best Q, so what we determine as the current best might be a very bad strategy
(which initially is indeed a very bad guess), and if we don’t try to explore we might get stuck with it.

� Repeat this procedure as follows. Choose an initial starting position of interest. Generate a lot of
paths from your learned model and update Q values of all states from those experiences. Learn a
better policy from the new Q. Repeat it again by sampling a lot of paths.

� Notice that we haven’t used the functions P or R at all! This is called ”model-free” and standard
Q-learning refers to this. In a sense, we used samples from the Bellman equation to avoid the use of
P and R. Depending on the problem, we can learn these.

(i): For any state x 2 S, a 2 A, generate real life experiences (or simulations). That is, generate
new states from your model, starting from state x using the action a. By looking at frequency of
occurences, we can approximate the Pa.x; �/. This is useful even if we know what Pa actually is.
If the dynamics are not simple, as we are learning from real experiences, we essentially learn what
occurs frequently. If there are vast number of states for which many of them are extremely unlikely
to transition, trying to implement the full transition probability Pa might be untrackable.

(ii): The functionR.x; a/might be already known. Even if not, we can use the same logic as in (i) and
keep track of expected reward from our simulations. Moreover, we might want to model R.x; a; z/ to
incorporate which state we are transitioning to.

Now, since we have access to the functions P and R, we can make updates smoother by using the
Bellman equation directly;

Q.x; a/ 
X
z2S

Pa.x; z/
�
R.x; a; z/C �max

Qa
Q.z; Qa/

�
Let us conclude by pointing out that the design of a player might be remarkably complex, as it can

potentially learn and behave as complex as a human. Here, we scratched the surface and introduced a player
as just trying to learn a single function Q.

2Typically, we design the reward function R to lead the player (or agent). However, in the standard Q-learning, this is not
known by the agent.
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4 Poisson Processes

4.1 Exponential and Poisson Distribution

Let us recall the properties of the Exponential distribution, which has a significant importance as being
the unique distribution without a memory. This will play a crucial role to introduce the fundamental jump
process, Poisson process, and will allow us to characterize continuous time discrete state Markov processes.

Definition 4.1 (Exponential Distribution). A random variable X is said to have an exponential distribution
with parameter �, denoted as X � Exp.�/, if

P .X � t / D
�
1 � e��t

�
1ft�0g

The probability density function of X is given by

fX .t/ D @tP .X � t / D �e
��t1ft�0g

To find the expected value, one can use integration by parts to compute

EŒX� D

Z 1
0

tfX .t/dt D
1

�

or (2.2) as

EŒX� D

Z 1
0

P .X � t /dt D
1

�

Similarly, one can compute EŒjX j2� D 2=�2 and hence Var.X/ D EŒjX j2� � .EŒX�/2 D 1=�2. Let us also
note the scaling property: if X � Exp.�1/ and �2 > 0, then

P .X=�2 � t / D P .X � t�2/ D
�
1 � e��1�2t

�
1ft�0g

that is, X=�2 � Exp.�1�2/. Now, the special property of the exponential distribution is

P .X > t C sjX > t/ D P .X > s/ (4.1)

That is, it does not matter if an event didn’t occured until some time to determine the future probabilities.
Exercise. Exponential distribution is the unique distribution satisfying (4.1).

Let us show that geometric distribution can converge to exponential distribution, which provides a good
intuition about memoryless property. Suppose we are flipping a coin with success rate �=n at each time step
1=n. Let Xn be the first success time. Then,

P .nXn D k/ D .1 � �=n/
k�1.�=n/

That is, nXn is a geometric distribution and we can easily compute the limit as n!1;

P .Xn > t/ D P .nXn > nt/ ' .1 � �=n/
nt
! e��t

One natural event we observe exponential distribution is the particle decay. Given that the radioactive
particle has not decayed yet provides no information about when it will decay. There are many other phe-
nomenas that can be modeled by the exponential distributions, such as distance between mutations in DNA,
getting a phone call, arrival of costumers etc.

Typically, we use the exponential distribution as a ”clock” that rings for events occurring independent
of time. It has additional useful properties: the minimum of such clocks, or the first one to ring, is also
exponentially distributed, and the identity of the ringing clock is independent of the time at which it rings.
Formally, we have the following theorem:
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Theorem 4.2. For 1 � i � n, suppose Xi � Exp.�i / are independent. Let V ´ mini Xi and I ´
argmini Xi . Then

P .V > t/ D e�.�1C���C�n/t ; i.e. V � Exp.�1 C � � ��n/; and P .I D i/ D
�i

�1 C � � � C �n

Moreover, V and I are independent.

Proposition 4.3. Let X1; X2; � � � be independent exponential distributions with the same parameter �. Set
Tn D X1 C � � � CXn. Then Tn distributed as �.n; �/, that is, the density function is given by

fTn.t/ D �e
��t .�t/

n�1

.n � 1/Š
1ft�0g

Exercise. Prove it by induction.

Example 4.4. Suppose there are two servers in a store: one provides goods, and the other handles payments.
Let’s assume their service times are exponentially distributed with rates �1 and �2.

Now, suppose that when a new customer arrives, there is already one person at the first server. What is
the expected time until the new customer leaves the store?

Let C 11 and C 12 be the times the first customer spends at each server. Similarly, let C 21 and C 22 be the
times for the new customer, given that they are being served. Then, the total time the new customer spends
in the system is given by

C 11 CmaxfC 21 ; C
1
2 g C C

2
2 D C

1
1 C C

2
1 C C

1
2 �minfC 21 ; C

1
2 g C C

2
2 :

Notice that, due to the memoryless property, the distribution of C 11 remains unchanged from the perspective
of the second customer, despite observing a customer already being served at the first server. The computa-
tion of the expected value follows straightforwardly.

Suggested Exercises. Durrett, 3rd edition. 2.1, 2.5, 2.6, 2.45, 2.47, 2.48, 2.49
Let us also recall the definition of the Poisson random variable, which will be connected to the counting

of the exponential clocks.

Definition 4.5. We say a random variableX has a Poisson distribution with mean �, denoted asX � Poi.�/,
if

P .X D k/ D e��
�k

kŠ
; k � 0

Note that if X � Poi.�/, then EŒX� D Var.X/ D �. Moreover,

Proposition 4.6. If Xi � Poi.�i / are independent, then
Pn
kD1Xi � Poi.

Pn
kD1 �i /.

Proposition 4.7. Suppose X1; X2; � � � are independent Poisson distributions with parameters �1; �2; � � � .
Then

P
�
X1 D `

ˇ̌ nX
kD1

Xk D m
�
D

 
m

`

!�
�1Pn
kD1 �k

�`�
1 �

�1Pn
kD1 �k

�m�`
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4.2 Poisson Process

We are now interested in counting the number of events with exponential distribution, which will be repre-
sented by the following definition:

Definition 4.8. Let X1; X2; � � � be independent exponentially distributed random variables with parameter
�. Set Tn´ X1 C � � � CXn. We call the stochastic process

Nt ´
X
n�1

1fTn�tg D maxfn � 1 W Tn � tg

a Poisson process with intensity (rate) � > 0.

Intensity � determines the instantaneous rate for the jump probability in the sense that:

h�1P .NtCh ¤ Nt /! �

To see this, observe that

P .NtCh ¤ Nt / D 1 � P .NtCh D Nt /

D 1 � P .XNtC1 > hC .t � TNt /jTNt < t;XNtC1 > .t � TNt //

D 1 � P .XNtC1 > h/ D 1 � P .X1 > h/

due to the memoryless property, and taking the limit is easy.

Theorem 4.9. If Nt is a Poisson process with intensity �, then Nt � Poi.�t/, 8t � 0.

Theorem 4.10. Let Nt be a Poisson process and fix s � 0. Then, QNt ´ NtCs � Ns is also a Poisson
process with the same intensity, independent of Nr for 0 � r � s.

Corollary 4.11. A Poisson process has independent increments. That is, Nt1 � Nt0 ; � � � ; Ntn � Ntn�1 are
all independent for any n and 0 � t0 � t1 � � � � tn <1.

In fact, Theorem 4.9 and Corollary 4.11 characterizes the Poisson process;

Theorem 4.12. A càdlàg 3 stochastic process Nt is a Poisson process with intensity � if and only if

(i) N0 D 0

(ii) Nt �Ns � Poi.�.t � s//

(iii) Nt has independent increments.

Suggested Exercises. Durrett, 3rd edition. 2.15, 2.17, 2.31.

We can generalize this definition in a straightforward manner;

Definition 4.13 (Non-homogeneous Poisson Process). A stochastic processNt is a non-homogeneous Pois-
son process with rate (or intensity) function � W RC ! RC, if

(i) N0 D 0

(ii) Nt �Ns � Poi
� R t
s �.r/dr

�
3càdlàg means paths are right continuous with left limits almost surely.
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Figure 3: Realizations of Poisson processes with rate 100 in unit time.

(iii) Nt has independent increments.

This definition is quite useful since not all processes maintain the same intensity at all times. One
important thing to note is that, if we define the arrival times,

�0´ 0; �nC1´ infft > 0 W NtC�n ¤ N�ng; 8n � 0 (4.2)

then their distributions are neither independent nor identical. They are clearly not identical since the rate
changes over time. They are also not independent because, given information about an earlier arrival time,
one gains knowledge about which part of the rate function is relevant for the next arrival.

Next, since the Poisson process can be used to count the number of independent events that have oc-
curred, it can also be used to combine i.i.d. random variables;

Definition 4.14 (Compound Poisson Process). A stochastic process St is a compound Poisson process if

St D Y1 C � � � C YNt

where St D 0 whenever Nt D 0, Nt is a Poisson process, and Yn’s are i.i.d. random variables.

It is important to compute the moments of such random variables. To do so, we have the following
theorem,

Theorem 4.15. Let Yi be i.i.d. random variables, and N be an independent non-negative integer valued
random variable. Set S D Y1 C � � � C YN with S D 0 when N D 0. Then followings hold,

(i) If EŒjY1j� <1 and EŒjN j� <1, then EŒS� D EŒY1�EŒN �.

(ii) If EŒjY1j
2� <1 and EŒjN j2� <1, then Var.S/ D Var.Y1/EŒN �C Var.N /EŒY1�2.

(iii) If N � Poi.�/, then Var.S/ D �EŒjY1j
2�.

Next, we will study the number of arrivals per each event of Yn’s, called thinning.

Theorem 4.16 (Thinning). Let St be a compound Poisson process, where associated i.i.d. random variables
Yn’s are taking values in a discrete state space S. Define,

N
y
t D

NtX
nD1

1fYnDyg; y 2 S

Then fN y
t gy2S’s are independent Poisson processes with rate �P .Y1 D y/.
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To further explain the intuition behind independence in thinning, consider flipping a coin each time the
Poisson process jumps. Suppose there are two people, H and T, and based on the coin flip, we send a signal
to the corresponding one. They cannot communicate with each other. Each of them still sees a Poisson
process, but now at half the original rate. Suppose we are told that 100 heads occurred in a unit time. This
does not change the distribution of how many tails occurred. Initially, this might seem counterintuitive, one
might expect that if 100 heads occurred, the number of tails should also be close to 100. However, consider
a case where the original Poisson process has rate 2, meaning we expect 1 event per unit time per person
after thinning. Now, if we are given that 100 heads occurred, this is already an extremely unlikely event, but
since it has happened, it does not affect the expected number of tails, which remains close to 1. It might be
easier to get convinced that

P .Nt D 100C k;N
T
t D 100/ D P .Nt D 100C k/P .N

T
t D 100/

which is equivalent in this scenario.
Next, we can also add independent Poisson processes, called superposition.

Theorem 4.17 (Superposition). Let N 1
t ; � � � ; N

n
t be independent Poisson processes with rates �1; � � � ; �n.

Then N 1
t C � � � CN

n
t is a Poisson process with rate �1 C � � � C �n.

Next, we state a lemma that demonstrates how to superpose Poisson processes and use thinning to
recover the distribution of individual Poisson processes. In essence, the lemma only states that one can
represent a collection of Poisson processes by constructing a new set of exponential clocks each time one of
them rings.

Lemma 4.18. Consider independent Poisson processesN 1
t ; � � � ; N

n
t with rates �1; � � � ; �n. SetNt ´ N 1

t C

� � � C N n
t . Let f�1

k
g1
kD0

; � � � ; f�n
k
g1
kD0

be independent exponential random variables with rates �1; � � � ; �n.
and introduce random variables Xk’s taking values in f1; � � � ; ng as

Xk D argmin
1�j�n

�
j

k

Then Xk’s are independent and

P .Xk D j / D
�j

�1 C � � � C �n

Moreover, N j
t has the same distribution as

PNt
kD1

1fXkDj g.

Let us also note that the Proposition 4.7 implies

Corollary 4.19. Let Nt be a Poisson process. For all 0 � s � t and 0 � m � n,

P .Ns D mjNt D n/ D

 
n

m

!�s
t

�m�
1 �

s

t

�n�m
That is, on fNt D ng,Ns has Binomial distribution with parameters .n; s=t/, denoted as Bin.n; s=t/, which
is independent of the rate of Nt .

It is a nice fact that, given the number of events that have already occurred, the event times are uniformly
distributed. That is,

Theorem 4.20. For a given Poisson process Nt , let �k be arrival times defined as in 4.2. Let Tk D
�1 C � � � C �k . Consider independent uniform distributions U1; � � � ; Un on Œ0; t � and their ordered version
U.1/; � � � ; U.n/. On the set fNt D ng, distribution of T1; � � � ; Tn is equal to U.1/; � � � ; U.n/.
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Example 4.21. Suppose young and erderly customers arrive to a ticket office, and we can model each of
them as independent Poisson processes N y

t , N e
t with rates 30 and 20.

Question. Suppose each customer, independently buys 1 ticket with probability 1=2, or 2 tickets with
probability 1=2. Let Zk be the number of customers in the first hour that bought k 2 f1; 2g tickets. What is
the joint distribution of .Z1; Z2/?

Answer. By the superposition theorem, Nt D N
y
t CN

e
t is a Poisson process with rate 50. Then, by the

thinning theorem, we can introduce N 1
t and N 2

t where corresponding Yn’s are uniform over f1; 2g. Then,

P .Z1 D m;Z2 D n/ D P .N 1
1 D m;N

2
1 D n/ D P .N 1

1 D m/P .N
2
1 D n/ D e

�50 25
m

mŠ

25n

nŠ

Question. What is the probability that the first 3 customers are young?
Answer. We will use the Theorem 4.18. To do so, let f�y

k
gk�0 and f�e

k
gk�0 be independent exponential

distributions with parameters 30 and 20. Define the corresponding Xk’s taking values in fy; eg. Let �3 be
the arrival time of the third customer. We know that

P .N y
�3
D 3/ D P

� 3X
kD1

1fXkDyg D 3
�
D P .X1 D y/P .X2 D y/P .X3 D y/ D .30=50/

3

Suggested Exercises. Durrett, 3rd edition. 2.35, 2.40, 2.57, 2.61.
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5 Renewal Processes
4 In general, there are many events that occurences are not memoryless. In this section, we will analyse
jump processes where arrival times are i.i.d. but not necessarily exponentially distributed as in the Poisson
process.

Let �i be i.i.d. random variables with the common cumulative distribution F , where F.0/ D 0. Define
T .n/´ Tn´ �1 C � � � C �n and

Nt ´ N.t/´
X
n�1

1fTn�tg D maxfn � 1 W Tn � tg

Example 5.1 (Markov Chains). Let Xn be a Markov chain and set �n D T nx �T
n�1
x . By the strong Markov

property, �n’s are i.i.d. under Px . Then the corresponding Nt is a renewal process.

Theorem 5.2. Let � D E�1 be the mean interarrival time. If P .�1 > 0/ > 0, then

N.t/=t ! 1=� as t !1 almost surely.

Next, we assign a reward ri to i th renewal, where all of them are i.i.d. and independent of �i . One can
further generalize ri to depend on �i . Define the total reward

R.t/´

N.t/X
iD1

ri

and we have the strong law of large numbers related to reward process,

Theorem 5.3. Let � D E�1 > 0. Then, almost surely it holds R.t/=t ! Er1=�. In words, limit of total
reward per time is expected reward divided by expected time.

Let us discuss briefly the alternating renewal process. Let s1; s2; � � � be independent with cumulative
distribution F and mean �F . Similarly, let u1; u2; � � � be independent with cumulative distribution G and
mean �G . Suppose a system alternates between two states, and times spend in each state is determined by
si and ui . For example, we can think about a machine that works until it breaks, and some time passes until
it becomes operational again.

Theorem 5.4. For alternating renewal process, limiting fraction of times in states are

�F

�F C �G
and

�G

�F C �G

Example 5.5. Suppose you have a machine that works some time with a given distribution (or you estimate
with past data). When it brakes down, you call a service and the repair time has another distribution. One
can use the result above to determine the long term working time of the machine.

5.1 Queueing systems

In this section, we will briefly discuss queueing theory. Let us show some simple examples of Kendall’s
notation to explain what is of interest;

� M/G/1: Poisson input, general service time, 1 server

4Due to time constraints, this section has not yet been taught in class. Thus, it might not be polished.
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� GI/M/c: General independent interarrival times, exponential service times, c servers.

� GI/G/c: General independent interarrival times, general service times, c servers.

Applications of such systems include telecommunication, traffic engineering, computing, project manage-
ment, and particularly industrial engineering where it is applied in the design of factories, shops, offices,
and hospitals.

We will first start with GI/G/1. Let �1; �2; � � � be i.i.d. arrival times with mean 1=� and s1; s2; � � � be
i.i.d. serving times with mean 1=�.

Theorem 5.6. Assume � < � and the queue starts from finite number of customers. Then the queue will
eventually empty out almost surely. Furthermore, the limiting fraction of time the server is busy is at most
�=�.

Let Xt be the number of customers at time t in the server, and define the long term average as

L D lim
t!1

1

t

Z t

0

Xt (average number of customers); Lq (average queue length)

Next, define the long term average of the service times

W D lim
n!1

1

n

nX
kD0

wn (average time spend); Wq (average waiting in queue)

where wn is the total time spend for the nth customer. Lastly, let

� D lim
t!1

Nt=t (average arrival rate)

be the long term average of customers arriving per time.

Theorem 5.7 (Little’s Law). L D �W , and Lq D �Wq

See A proof for the Queuing Formula: L D �W , John D.C. Little. (1961)

Example 5.8. We will discuss two examples to present the idea.
For example, if you are planning for a hospital, one might have the data of average arrival of patients (�)

and average time they spent (W ). Then, one can estimate the average patient number (L) and have a crude
estimate of what is necessary to accomodate them.

Another example might be a factory, where the amount of materials needed for production is exactly
known and fixed per day .�/, and working capacity of the factory is known .L/. Then one can estimate the
so called flow time W , which tells how long it takes for the factory to process single item from start to end.

Next, we will consider M/G/1 queue, where costumers arrive as Poisson process with rate �. Define the
probability that k customers arrive during one service time as

ak D

Z 1
0

e��t
.�t/k

kŠ
dG.t/

Then, the average customer arrival isX
k�0

kak D

Z 1
0

�tdG.t/ D �=�
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Let �i be i.i.d. RVs with P .�i D k/ D ak . Then, we can create a Markov chain as

XnC1 D .Xn C �n � 1/
C

Note thatXn represents our queue, because Poisson process has independent increments even under random
times. Namely, given how many customers arrived during the first service time does not give any information
about how many customers will arrive in the second service time and has the same distribution.

Theorem 5.9. � If � < �, then Xn is positive recurrent with E0T0 D �=.� � �/.

� If � D �, then Xn is null recurrent.

� If � > �, then Xn is transient.

We will not give the proof of the following result.

Theorem 5.10 (Pollaczek-Khintchine Formula). For M/G/1 queue, long term average waiting time in queue
is

Wq D
�E.s2i =2/

1 � �=�
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6 Continuous Time Markov Chains

In this section, we will extend our index set for time from being discrete as N to continuous RC.

Definition 6.1. We say a stochastic process Xt over a countable state space S is a temporally homogeneous
continuous time Markov chain (CTMC) if

P .XtCs D yjXs D x;Xsn D xn; � � � ; Xs0 D x0/ D P .Xt D yjX0 D x/

for any x; y; x0; � � � ; xn 2 S, 0 � s0 < � � � < sn < s, and t � 0. Moreover,

pt .x; y/´ P .Xt D yjX0 D x/´ Px.Xt D y/

is called the corresponding transition probability of CTMC, and

q.x; y/´ lim
t!0

pt .x; y/ � p0.x; y/

t
D lim
t!0

pt .x; y/ � 1fxDyg
t

is called the jump rate, if the limit exists for all x; y 2 S .

We are going to observe that the jump rate determines the CTMC under regularity assumptions. Thus,
the following proposition provides the first representation of all regular CTMCs.

Proposition 6.2. LetNt be a Poisson process with intensity �, and let Yn be an independent discrete Markov
chain on S with transition probability pY . Then Xt ´ YNt is a continuous time Markov chain with the
transition probability

pt .x; y/ D

1X
mD0

Px.Ym D y/P .Nt D m/ D e
��t

1X
mD0

pmY .x; y/
.�t/m

mŠ

with the convention p0Y .x; y/ D 1fxDyg. Moreover, jump rate is given by

q.x; y/ D ��1fxDyg C �pY .x; y/

and hence the following relations holds,X
y2S

q.x; y/ D 0; � D

P
y¤x q.x; y/

1 � pY .x; x/
; pY .x; y/ D 1fxDyg C

q.x; y/

�

Lastly, givenX0 D x, first time thatXt leaves x is distributed exponentially with parameter �.1�pY .x; x//.

Assumption 6.3. (i): Markov chain is almost surely right continuous. That is,

P
�

lim
h#0

XtCh D Xt

�
D 1

(ii-a): Markov chain admits jump rate q.x; y/ where �q.x; x/ <1 and
P
y2S q.x; y/ D 0.

(ii-b): Markov chain admits jump rate where � infx2S q.x; x/ <1 and
P
y2S q.x; y/ D 0.

Remark 6.4. The assumption
P
y2S q.x; y/ D 0 is not arbitrary. One can show that it implies pt .x; y/ is

continuously differentiable. Conversely,X
y2S

q.x; y/ D lim
t!0

1

t

X
y2S

pt .x; y/ � 1fxDyg D 0

so if pt .x; y/ is continuously differentiable, one can properly interchange the limit and recover the conditionP
y2S q.x; y/ D 0.
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Theorem 6.5. Suppose a continuous time Markov chain satisfies 6.3 (i), and jumps finitely many on any
interval almost surely. Then it satisfies 6.3 (ii-a).

We will not prove this theorem. Without the right continuity assumption, there are processes that makes
infinitely many jumps in any finite interval. (due to Blackwell)

Theorem 6.6. Suppose Markov chain satisfies the assumption 6.3. Let

�x ´ �q.x; x/ <1

Then,

(i) First time Markov chain leaves the state x has exponential distribution with rate �x .

(ii) If �x D 0, then Markov chain never leaves x.

(iii) If �x > 0, then Markov chain jumps to the state y ¤ x with probability q.x; y/=�x .

Proposition 6.7. Suppose jump rate q W S � S ! R is given, where
P
y¤x q.x; y/ < 1 for all x 2 S.

Then there exists a continuous time Markov chain with this jump rate.

Remark 6.8. (i): Given a CTMC, Zn defined in the proof is called the embedded Markov chain.
(ii): Recall Proposition 6.2. Let

�´ sup
x
�x and pY .x; y/´

q.x; y/

�
if x ¤ y; pY .x; x/´ 1 �

�x

�

Then, we already knew that the corresponding process Xt has the given jump rate. We now have two repre-
sentations of a continuous-time Markov chain: one using the same exponential clocks and allowing jumps
to the same state (under Assumption 6.3 (ii-b)), and one using different exponential clocks and disallow-
ing jumps to the same state (under Assumption 6.3 (ii-a)). One representation may be easier to work with
depending on the context of the question.

(ii): Note that we can simulate a Markov chain with given jump rates q by following the construction in
the proof. Take any initial state x 2 S. Then, draw the time of the jump from an exponential distribution
with parameter �x , and draw the next state according to the jump probabilities given by q.x; �/=�x . Repeat
this procedure at the next state.

Example 6.9 (Poisson Process). Poisson process with intensity � is a CTMC with

q.n; nC 1/ D �

This follows from Proposition 6.2 by setting S D N, pY .n; nC 1/ D 1. Then Xt D Nt and hence

q.n; n/ D ��; q.n; nC 1/ D � (6.1)

Example 6.10 (Branching Process). Each member of the population independently dies with rate � or gives
birth with rate �. Let Xt denote the number of members of this population. We have that Xt is a Markov
chain. If Xt D n, then there are n exponential distributions (clocks) with rate � and n exponential clocks
with rate �. Let �b and �d be the minimum of n clocks, standing for birth and death. Then by Theorem 4.2,
�b � Exp.n�/ and �d � Exp.n�/. By the Theorem 6.6,

�n´ q.n; nC 1/C q.n; n � 1/ D n.�C �/
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which comes from min.�b; �d /. Again by Theorem 4.2,

P .�b D min.�b; �d // D
�

�C �

and Theorem 6.6 implies

q.n; nC 1/ D �n
�

�C �
D n�; and similarly q.n; n � 1/ D n�

The general idea is that if jumps occur only by size 1, then q is determined by the rate of the exponential
clock. Let us use this in the next example.

Example 6.11 (Queue). Suppose customers arrive according to Poisson process with rate � and there are s
tellers, independently serving customers with rate �. Let Xt denote the number of customers in the bank.
Then

q.n; nC 1/ D �; q.n; n � 1/ D

(
n�; if 0 � n � s
s�; if n � s

Before moving on, we will state the Strong Markov property. We defer the proper definition of stopping
times to later, see the Definition 7.50.

Theorem 6.12 (Strong Markov Property). Let T be a stopping time with respect to CTMCXt with transition
probabilities pt . For any t � 0, given fT <1; XT D xg, XTCt is independent of XŒ0;T �. Moreover,

P .XTCt D yjT <1; XT D x/ D pt .x; y/

We will not prove this result, but as a general idea, one can first prove it for Poisson process and then lift
it to the CTMC.

6.1 Kolmogorov’s Equations

We have seen that given transition rates, we can form a Markov chain. In this section, we will determine the
transition probability given the transition rates.

Theorem 6.13 (Chapman-Kolmogorov Equation). Consider a CTMC with countable state space S and
transition probabilities pt . Then

ptCs D ptps; that is, ptCs.x; y/ D
X
z2S

pt .x; z/ps.z; y/

Definition 6.14 (Generator). For a given transition rates, define the generator Q as

Q.x; y/´

(
q.x; y/ if x ¤ y
��x ´ �

P
y¤x q.x; y/ if x D y

Theorem 6.15 (Kolmogorov’s Equations). Transition probabilities pt of a CTMC satisfies

p0t D Qpt and p0t D ptQ

where the former is called Kolmogorov’s Backward Equation and the latter is called Kolmogorov’s Forward
Equation5. In particular, pt commutes with the generator Q.

5Kolmogorov’s Forward Equation is also called Fokker-Planck equation.
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As the solution is given by an exponential, let us recall the definition of the exponential for matrices;

Definition 6.16. Let M be any n � n matrix. Define

eM D exp.M/´
X
k�0

M k

kŠ
D lim
k!1

�
I C

M

k

�k
where M 0 D I is the identity matrix.

Theorem 6.17. For a CTMC with the generator Q, transition probabilities are given by

pt D exp.tQ/

Example 6.18. (Two state Markov chain) Let S D f0; 1g and consider a general generator

Q D

�
�� �

� ��

�
Then the Kolmogorov’s backward equation is

p0t .0; 0/ D ��.pt .0; 0/ � pt .1; 0//; and p0t .1; 0/ D �.pt .0; 0/ � pt .1; 0//

Substract these equations to get

Œpt .0; 0/ � pt .1; 0/�
0
D �.�C �/.pt .0; 0/ � pt .1; 0//

this has the unique solution
pt .0; 0/ � pt .1; 0/ D e

�.�C�/t

Then we can solve
p0t .0; 0/ D ��e

�.�C�/t ; and p0t .1; 0/ D �e
�.�C�/t

which yields, together with p0.0; 0/ D 1; p0.1; 0/ D 0,

pt .0; 0/ D
�

�C �
C

�

�C �
e�.�C�/t ; and pt .1; 0/ D

�

�C �
�

�

�C �
e�.�C�/t

Lastly, recall that pt .0; 1/ D 1 � pt .0; 0/ and pt .1; 1/ D 1 � pt .1; 0/. Therefore, pt .x; �/ converges
exponentially fast to .�; �/=.�C �/.

6.2 Limiting Behaviour

Definition 6.19. We say a Markov chain with the generatorQ is irreducible, if for any states x; y 2 S, there
exists x D x0; x1; � � � ; xn D y such that q.xk; xkC1/ > 0 for all 0 � k < n.

Lemma 6.20. If CTMC is irreducible then pt .x; y/ > 0 for all x; y 2 S and t > 0. Moreover, under the
assumption 6.3 (i), (ii)-b, the followings are equivalent,

� CTMC is irreducible

� Embedded MC is irreducible

� pt .x; y/ > 0 for some t > 0 and for all x; y 2 S.
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Definition 6.21. We say a distribution � on S is stationary, ifX
y2S

�.y/pt .y; x/ D �.x/; 8t > 0

� is also called equilibrium distribution.

Theorem 6.22. Suppose CTMC is irreducible. � is a stationary distribution if and only ifX
y2S

�.y/Q.y; x/ D 0

for all x 2 S where Q is the generator of the Markov chain.

Theorem 6.23. Suppose CTMC is irreducible. � is a stationary distribution for a CTMC if and only if Q� is
a stationary distribution for the embedded chain, where

�.x/ D
1

Z

Q�.x/

�x

with Z being the normalization constant.

Note that, for the discrete time Markov chain, if a recurrent state is not aperiodic, then pnk.x; x/ D 0

for some k and for all n, which prevents the convergence. In the continuous case, pt .x; x/ > 0 for all x,
hence we cannot capture such aperiodicity. In other words, if we define a discrete time Markov chain by
using pt for some fixed t , it will be aperiodic and will converge to the stationary distribution. Let us use this
argument to prove the following theorem;

Theorem 6.24. Consider an irreducible CTMC with transition probability pt and stationary distribution
� . Then

lim
t!1

pt .x; y/ D �.y/ and lim
t!1

1

t

Z t

0

1fXsDyg D �.y/

Example 6.25 (Weather in LA). Suppose weather has 3 states, sunny, smoggy, and rainy. The weather
changes as follows

� It is sunny for exponential time, with mean 3, and then gets smoggy.

� It is smoggy for exponential time, with mean 4, and then gets rainy.

� It is rainy for exponential time, with mean 1, and then gets sunny.

Now, let us note that we are given the parameters � at each state. However, there is only one possibility of
jump, so effectively transition rate q’s are given. Therefore,

Q D

0@�13 1
3

0

0 �
1
4

1
4

1 0 �1

1A
Let us find the equilibrium distribution by �Q D 0. That is,

��.1/=3C �.3/ D 0; �.1/=3 � �.2/=4 D 0; �.2/=4 � �.3/ D 0;

Note that adding the first and third equation yields the second. Hence, we need to use that total mass adds
up to 1 to solve it. Solving this yields,

�.1/ D 3=8; �.2/ D 4=8; �.3/ D 1=8

Therefore, long term fractions are given by these probabilities.
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6.3 Detailed Balance Condition

Definition 6.26. Assume that a distribution � satisfies

�.x/Q.x; y/ D �.y/Q.y; x/

for all x; y 2 S. Then it is said to satisfy the detailed balance condition.

As expected, if � satisfies the detailed balance condition, it is a stationary distribution.

Example 6.27 (Birth and Death chain). Assume the state space S D N. Let

Q.n; nC 1/ D �n; n < N; Q.n; n � 1/ D �n; 0 < n

For example, if each individual gives birth to one child with rate � and dies with rate �, then �n D n� and
�n D n�. Assuming �n; �n > 0 for all n, the chain is irreducible.

Now, let us find the stationary distribution by the detailed balance condition.

�.n/�n D �.n � 1/�n�1 H) �.n/ D �.0/
�n�1 � � ��0

�n � � ��1
; n > 0

As the total mass equals to 1, we get

�.0/ D
1

1C
PN
kD1

�k�1����0
�k ����1

which yields the stationary distribution.

Lemma 6.28. For a Poisson process Nt with rate �, it holds that

lim
t!1

Nt

t
D �

almost surely.

Theorem 6.29. LetNt be a Poisson process with rate � and jump times Tk . Consider an irreducible CTMC
Xt with the stationary distribution � , which may depend on Nt . For a state x 2 S , define

N x
t ´

X
k�1

1fTk�tg1fXTk�Dxg

which counts the number of arrivals of the Poisson process during which the Markov chain is in state x
immediately before arrivals. Then, for any state x such that either Xt leaves x independently of Nt , or Xt
leaves x at the next arrival of Nt , we have

lim
t!1

N x
t

t
D ��.x/ and hence lim

t!1

N x
t

Nt
D �.x/

Proof. For a given state x, introduce stopping times � in
k
; �out
k

as the k-th jump time to state x and the k-th
leaving time from state x ofXt . Let us also define number of jumps to state x as nt D maxfk � 1 W � in

k
� tg.

Then,

N x
t ´

X
k�1

1fTk�tg1
n
XT�

k
Dx

o D ntX
kD1

N�out
k
^t �N� in

k
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where Xt� ´ lims"t Xs . Now, let us start by (i) and decompose N x
t =t as;

N x
t =t D

�
1

nt

ntX
k�1

N�out
k
^t �N� in

k

��
ntR t

0 1fXsDxgds

��R t
0 1fXsDxgds

t

�
First, nt !1 as t !1 almost surely. Then, the first term is an average of i.i.d. RVs except the very last
term. This is due to the fact that Xt leaves x independent of Nt . Thus, by the SLLN,�

1

nt

ntX
k�1

N�out
k
^t �N� in

k

�
! E

�
N�x

�
D E

�
EŒN�x j�

x�
�
D �EŒ�x�

where �x is the leaving time of state x for the chain Xt . For the second term, one observes that the denomi-
nator is a sum of nt many exponential variables, excluding the boundary at t . Thus, again by SLLN,�

ntR t
0 1fXsDxgds

�
!

1

EŒ�x�

The third term converges to �.x/ by the Theorem 6.24. Thus, combining all yields

N x
t =t ! ��.x/

Then, the limit of N x
t =Nt follows by Lemma 6.28.

Lastly, (ii) follows by the same computations in a simpler manner since N�out
k
�N� in

k
D 1, and since Xt

leaves x with the next arrival of the Poisson process, 1=EŒ�x� D �.

Example 6.30 (Barbershop). A barber cuts hair with rate 3 per people. That is, each haircut is exponential
random variable with rate 3. The shop has 2 chairs where customers can wait, and no customer is willing to
wait standing hence they leave. Customers arrive according to the Poisson process, with rate 2 (in units of
hours). Let Xt be the total number of customers in the shop, hence S D f0; 1; 2; 3g.

From the verbal description, we claim the generator is given by

Q D

0BB@
�2 2 0 0

3 �5 2 0

0 3 �5 2

0 0 3 �3

1CCA
State 0 and 3 are clearly matching with the description. For 1 and 2, jump occurs according to the minimum
of two exponential distributions, and the Theorem 4.2 together with the Theorem 6.6 shows that we match
the given description.

To find the stationary distribution, we can check the detailed balance condition,

2�.0/ D 3�.1/; 2�.1/ D 3�.2/; 2�.2/ D 3�.3/

together with the total mass condition, we get

�.0/ D
27

65
; �.1/ D

18

65
; �.2/ D

12

65
; �.3/ D

8

65

Next, let us find the long run fraction of lost customers. We can use the Theorem 6.29. Note that the
customer arrivals is a Poisson process, and Xt leaves the state 3 independent of the customer arrivals. Thus,
long run fraction of lost customers is �.3/.

Suggested Exercises. Durrett, 3rd edition. 4.1, 4.3, 4.5, 4.7, 4.8, 4.12
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6.4 Exit Distributions & Exit Times

Definition 6.31. Introduce the hitting time of a set A � S as

VA´ infft � 0 W Xt 2 Ag

and set Va ´ Vfag.

Note that if we are interested in the event fVA < VBg, then we do not need to keep track of the jump
times, and hence the embedded Markov chain (see Proposition 6.7) has the exact same events. That is, if
we define OV for the embedded discrete time Markov chain, and take the continuous time Markov chain to
be defined by this embedded chain (so that the events can be compared directly), then fVA < VBg D f OVA <
OVBg.

Theorem 6.32. Consider a CTMC with state space S. Let A;B � S such that C D S n .A [ B/ is finite.
If Pc.VA ^ VB <1/ > 0 for all c 2 C , then h.x/ D Px.VA < VB/ is the unique bounded solution to

h.a/ D 1; 8a 2 A; h.b/ D 0; 8b 2 B; and
X
y2S

Q.c; y/h.y/ D 0

Example 6.33 (Barbershop). Let us find what is the probability that the barbershop will be full before it
gets empty. That is, A D f3g; B D f0g. Recall

Q D

0BB@
�2 2 0 0

3 �5 2 0

0 3 �5 2

0 0 3 �3

1CCA
hence for c D f1; 2g, we get

3h.0/ � 5h.1/C 2h.2/ D 0; 3h.1/ � 5h.2/C 2h.3/ D 0

which yields
P1.V3 < V0/ D 4=19; P2.V3 < V0/ D 10=19

Next, we will lift the Theorem 2.52 to the continuous case again by relying on the embedded Markov
chain.

Theorem 6.34. Consider a CTMC with state space S and jump times fTkg1kD0. Let A � S such that
C D S n A is finite, and f W S � S ! R where

f .x; y/ � 0; f .x; x/ D 0 8x; y 2 S

If Pc.VA <1/ > 0 for all c 2 C , then

g.x/´ Ex

h 1X
kD1

f .XTk�1 ; XTk /1fTk�VAg
i

is the unique bounded solution to

g.a/ D 0; 8a 2 A; and
X
y2S

Q.c; y/g.y/C
X
y2S

Q.c; y/f .c; y/ D 0
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In particular, if

f .x; y/ D
1

�x
1fx¤yg

then g.x/ D ExŒVA�, and the equation becomes

g.a/ D 0; 8a 2 A; and
X
y2S

Q.c; y/g.y/C 1 D 0

Example 6.35 (Barbershop). Let us now compute the expected time for barbershop to get full. That is,
f .x; y/ D ��1x 1fx¤yg and A D f3g. For x D f0; 1; 2g, we get

�2g.0/C 2g.1/C 1 D 0; 3g.0/ � 5g.1/C 2g.2/C 1 D 0; 3g.1/ � 5g.2/C 1 D 0

solving these yields
g.0/ D 33=8; g.1/ D 29=8; g.2/ D 19=8

Suggested Exercises. Durrett, 3rd edition. 4.15, 4.16, 4.17, 4.18
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7 From Measure Theory to Martingales

7.1 A Tour in Measure Theory

In this section, we will introduce the fundamentals of measure theory and provide an exposure to the core
theorems.

The main objective of measure theory is to study functions that assign a real value to subsets of a given
set. As a core structural requirement, we aim to understand functions that are additive under disjoint subsets.

In geometry, which is vital for intuition, this notion corresponds to length, area, volume etc. Importantly,
measure theory allows the study of integration in a robust way, allowing powerful limit theorems to hold. In
our context, probability theory is built upon measure theory.

It turns out that not all subsets of a given set can be considered. Vague intuition is that, a set has no
constraints, it is just a collection. And without any requirements, one can construct pathological examples
in mathematics. Banach and Tarski proved the following interesting result in 1924:

Let U; V be arbitrary bounded open sets in Rm form � 3. There exists k 2 N and subsets E1; � � � ; Ek;
F1; � � � ; Fk of Rm such that Ei ’s partition U , Fi ’s partition V and Ei is congurent (translation + rotation +
reflection) to Fi .

Definition 7.1. A collection of subsets F of a set � is called a � -algebra, if

� If fEkg1kD1 2 F , then [kEk 2 F .

� If E 2 F , then Ec 2 F .

For any set�, all subsets 2� and f;; �g (trivial) are � -algebras. Furthermore, intersection of � -algebras
is itself a � -algebra. Therefore, given any collection of subsets E , we define �.E/ as the � -algebra generated
by E .

Exercise 7.2. Show that

(i) ; and � is contained in any � -algebra,

(ii) � -algebra is closed under countable intersections,

(iii) Intersection of arbitrary family of � -algebras is a � -algebra.
Relying on this, define the � -algebra generated by any collection of subsets E , denoted as �.E/.

So, which � -algebra to take? For any topological space, the most important � -algebra is the one gener-
ated by all the open sets. We call it the Borel � -algebra. Roughly speaking, Borel � -algebra contains all the
countable intersections and unions of open sets. It is informative to keep in mind (i) geometric objects with
partitions, (ii) intervals in (real) numbers, (iii) open balls around continuous functions. (i) serves well for an
abstract case, and the discrete nature of it helps the intuition greatly. (ii) is crucial as numbers are, however,
as in every area of mathematics, concepts becomes unimaginably powerful once applied to functions and
(iii) will serve us as a basis in stochastic processes.

Next proposition is the underlying reason why cumulative distribution function characterizes a probabil-
ity distribution. The proof (omitted) relies on the fact that every open set in R is a countable union of open
intervals.

Proposition 7.3. The Borel � -algebra on R is generated by intervals. Any collection of intervals, such as
.a; b/, Œa; b�, .�1; a/, etc. can be used as a generator of the Borel � -algebra.
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Definition 7.4. A measure on .�;F/ is a function � W F ! Œ0;1� such that

� �.;/ D 0

� �.[1
kD1

Ek/ D
P1
kD1 �.Ek/ for any collection of disjoint subsets Ek in F .

We call .�;F ; �/ a measure space.

Example 7.5. Let F D 2�6 for any set �, and take any � W �! Œ0;1�. Then,

�.E/´
X
x2E

�.x/´ sup
n X
x2F

�.x/ W F � E;F finite
o

is a measure on .�;F/. In general, � might be understood as a density. Two special cases are important:

(i) If �.x/ D 1 for all x, it is called counting measure.

(ii) If �.x0/ D 1 for some x0 2 � and 0 otherwise, it is called Dirac measure or point mass.

Next theorem clarifies why probability distributions are characterized by their cumulative distributions.7

Theorem 7.6. Let F W R ! R be any increasing, right continuous function. Then there exists a unique
measure �F on R with �F ..a; b// D F.b/ � F.a/. If G is another such function, we have �F D �G if
and only if F �G is constant.

Note that we can generate a significant amount of measures on R by above theorem. Most important
example is the so called Lebesgue measure m on R, which is the measure associated with F.x/ D x where
m..a; b// D b � a. Some basic properties are as follows,

Theorem 7.7. Let .�;F ; �/ be a measure space.

(Monotonicity) If E � F , then �.E/ � �.F /.

(Subadditivity) �.[kEk/ �
P
k �.Ek/.

(Continuity) If E1 � E2 � � � � , then �.[kEk/ D limk �.Ek/.
If E1 � E2 � � � � and �.E1/ <1 then �.\kEk/ D limk �.Ek/.

Exercise 7.8. (i) Find a sequence Ek such that �.E1/ D1 and continuity from above fails.

(ii) Show that, if �1; �2; � � � are measures on .�;F/, and a1; a2; � � � 2 Œ0;1/, then
P1
kD1 ak�k is a

measure on .�;F/.

(iii) .�;F ; �/ is a measure space. Show that �.E/C �.F / D �.E [ F /C �.E \ F /;8E;F 2 F .

(iv) .�;F ; �/ is a measure space and fix E 2 F . Show that �E .A/´ �.A \E/ is a measure.

We say E 2 F is a null set if �.E/ D 0. If a statement is true for all ! 2 � excluding a null set, then
we say it holds almost surely, or almost everywhere.

Next, we will discuss measurable functions. First, recall that any function

f W �! ƒ

induces a mapping

f �1 W 2ƒ ! 2� defined as f �1.E/ D f! 2 � W f .!/ 2 Eg

which preserves unions, intersection and complements. Therefore,
� If G is a � -algebra for ƒ, then ff �1.E/ W E 2 Gg is a � -algebra for �.

62� denotes all the subsets.
7Probability distribution means �.�/ D 1.
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Definition 7.9. Given two measurable spaces .�;F/, .ƒ;G/, a function f W � ! ƒ is called measurable
if f �1.E/ 2 F for all E 2 G.

Proposition 7.10. If X; Y are topological spaces, any continuous function is measurable when X; Y are
equipped with Borel � -algebras.

In fact, measurable functions are closely related to continuous functions but we will not explore this. As
an informative example, note that the function

f .x/ D 1 for all x 2 Œ0; 1� nQ and 0 otherwise

is a measurable function. Since m.Q/ D 0, for arbitrary " > 0, one can find a domain with measure 1 � "
for which f is continuous.

Introduce the indicator function or characteristic function as

1fEg.!/´

(
1 if ! 2 E
0 if ! … E

which is measurable iff E is in the � -algebra. Then we have the definition of functions that the integration
is build on.

Definition 7.11. We say � W �! R is simple, if � is measurable and the range is a finite subset of R. The
standard representation of � is

� D

nX
kD1

xk1fEkg; where Ek D �
�1.xk/; range.�/ D fx1; � � � ; xng

We are ready to talk about the integration now. Let .�;F ; �/ be a measure space. First, we define the
integral of a simple function � with the standard representation asZ

�d�´
X
k

xk�.Ek/; and
Z
A

�d�´

Z
�1fAgd�´

Z
�1fAg;8A 2 F (7.1)

Define LC as the space of all measurable positive functions,

LC´
n

all measurable f W �! RC
o

We now lift the definition of integral to any f 2 LC asZ
fd�´

Z
f ´ sup

� Z
�d� W 0 � � � f; � simple

�
(7.2)

Since all the functions can be decomposed as f D f C � f �8 to negative and positive parts, we can
define integrals if

R
jf jd� <1, which we denote all such functions as L1,

L1´

�
all measurable f W �! R s.t.

Z
jf jd� <1

�
Exercise 7.12. Show that,

8f C D max.0; f / and f � D max.0;�f /. Also,
R
f ´

R
f C �

R
f �.
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(i) when f is a simple function, (7.2) agrees with (7.1).

(ii) c
R
f D

R
cf , and if f � g then

R
f �

R
g.

Let us note down some expected properties of integration, along with a simple but important observation:
integration—when considered as a mapping on subsets—defines a measure.

Proposition 7.13. Let �; ' 2 LC be simple functions. Then,

(i) If c > 0, then
R
c� D c

R
�.

(ii)
R
.� C '/ D

R
� C

R
'

(iii) If � � ', then
R
� �

R
'.

(iv) The map A 7!
R
A �d� is a measure.

The following examples demonstrate how the theory we are discussing can unify the idea of integration,
and the subsequent theorems will show that the generality (or simplicity) of the definitions allows us to
obtain powerful (or general) results concerning the relations between integration and convergence.

Example 7.14 (Summation). Let � D N, F all subsets of N, and �.E/ D jEj. ThenZ
fd� D

X
n�0

f .n/

Example 7.15 (Lebesgue Integral). Let � D Œa; b�, B be the Borel � -algebra and m Lebesgue measure.
Then

R
fdm D

R b
a f .x/dx if f has discontinuities only on a set of measure 0.

Recall the function f that is equal to 1 on Œ0; 1� except Q. We simply identify this function same as
identically 1, and integral is well defined to be 1 too. Recall that we typically characterize Rimeann integral
on continuous functions, whereas now we have a larger class of functions for which in particular allows us
to ’ignore’ zero measure events.

Example 7.16 (Probability). Let .�;F ;P / be a probability space. That is, P .�/ D 1. Then,

EX ´
1

P .�/

Z
�

XdP

for any random variable (i.e. measurable function) X .

We now list three basic convergence theorems, which forms the backbone of the theory. These conver-
gence theorems with measurable functions allows one to carry out analysis, whereas working on continuous
functions requires verifications case by case. We will omit the proofs for the sake of this course.

Theorem 7.17 (Monotone Convergence Theorem). If fk 2 LC and fk � fkC1 for all 1 � k, then

lim
k!1

Z
fkd� D

Z
lim
k!1

fkd�

Theorem 7.18 (Fatou’s Lemma). If fk 2 LC for all 1 � k,Z
limfkd� � lim

Z
fkd�
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Theorem 7.19 (Dominated Convergence Theorem). Suppose fk 2 L1 and

� limk fk D f almost everwhere

� there exists g 2 L1 such that jfkj � g for all k,

then
lim
k

Z
fkd� D

Z
fd�

Lastly, we will see two more important theorems, simplified considerably.

Theorem 7.20 (Fubini-Tonelli). If f 2 LC.� �ƒ/ (Tonelli) or f 2 L1.� �ƒ/ (Fubini), thenZ
��ƒ

f .x; y/d.� � �/.x; y/ D

Z
�

� Z
ƒ

f .x; y/d�.y/
�
d�.x/ D

Z
ƒ

� Z
�

f .x; y/d�.x/
�
d�.y/

where � � � is the product measure on � �ƒ.

Recall Example 7.14, and Fubini-Tonelli allows us to interchange summations.

Theorem 7.21 (Radon-Nikodym). Let �; � be � -finite9 measures on .�;F/ where �.E/ D 0 if �.E/ D 0
(denoted as � � �). Then there exists a unique (almost everywhere) integrable function f W � ! R such
that

d� D fd�; that is, �.E/ D
Z
E

fd�

� Recall that E 7!
R
E fd� is a measure by Proposition 7.13.

9That is, � is a countable union of sets with finite measures.
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7.2 Basics of Probability Theory

In probability theory, measures (with total mass 1) are typically denoted by P , and the integral is denoted
by E or EP . Measurable space is typically called the event space, and we typically do not model it except
for the sake of introductory examples. Measurable functions � ! R are called random variables (RVs),
denoted as X; Y;Z etc. We always implicitly consider the Borel sigma algebra B.R/ on R. Moreover, we
take the change of variable formula as granted:

EŒX� D

Z
�

XdP D

Z
R
xd�X .x/

where �X .A/ D P .X 2 A/ is the law of X .

Definition 7.22. Let .�;F ;P / be a probability space, and X be a random variable. We denote the sigma
algebra generated by X as �.X/´ fX�1.A/ W A 2 B.R/g.

Example 7.23. Consider the event space as � D f1; 2; 3; 4; 5; 6g, F D 2� and let X D 1 on 6 and 0
otherwise. Then �.X/ D f;; f6g; f1; 2; 3; 4; 5g; �g.

As X is measurable, �.X/ � F but it might be strict as above. Also, if X is constant, �.X/ D f;; �g.
Roughly speaking, �.X/ characterizes how much information X yields. Note that, if X takes finitely many
values, then �.X/ is generated by finitely many sets.

In this course, we will work with square integrable random variables (Hilbert space),

L2´

�
all RVs X W �! R s.t. EjX j2 <1

�
For X; Y 2 L2, introduce

Var.X/´ E
h�
X � EŒX�

�2i
D EŒjX j2� � jEŒX�j2

Cov.X; Y /´ E
h�
X � EŒX�

��
Y � EŒY �

�i
D EŒXY � � EŒX�EŒY �

�.X; Y /´ �X;Y ´
Cov.X; Y /
�X�Y

; ��´
p

Var.�/

For random vectors X D .X1; � � � ; Xd /
> W � ! Rd , we similarly define �X .A/´ P .X 2 A/ for A

in Borel � -algebra of Rd and introduce the cumulative distribution function (cdf) as

FX .x/´ P .X1 � x1; : : : ; Xd � xd /; x 2 Rd

We say random variables X1; : : : ; Xn are independent by the following equivalent definitions

(i)
F.X1;:::;Xn/.x1; : : : ; xn/ D FX1.x1/ � � �FXn.xn/

(ii) E
�Qn

iD1 gi .Xi /
�
D
Qn
iD1E

�
gi .Xi /

�
for any bounded scalar Borel measurable functions g1; : : : ; gn.

Remark 7.24. Independent RVsX1; : : : ; Xn induces a product measure on�n. Let n D 2 and recall Fubini-
Tonelli Theorem 7.20 with f .x; y/ D xy. We get that

EŒXY � D

Z
R�R

xy.d�X � d�Y / D

Z
R

�Z
R
xyd�X

�
d�Y D

Z
R
xd�X

Z
R
yd�Y D EŒX�EŒY �

Also, if EŒXY � D EŒX�EŒY �, or equivalently, Cov.X; Y / D 0, we say X and Y are uncorrelated.
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Definition 7.25. Recall the Radon-Nikodym Theorem 7.21. Suppose the law of X satisfies �X � m. Then
the Radon-Nikodym derivative fX is called the density (pdf) of X . In particular,

�X ..a; b// D

Z
.a;b/

fdm D
Z b

a

f .x/dx

Moreover, existence of density is equivalent to FX being absolutely continuous. In this case, FX is almost
everywhere differentiable and @xFX .x/ D f .x/.

Definition 7.26. Suppose fXngn�1 and X are random variables. We say Xn ! X

� almost surely if P .limn!1Xn D X/ D 1,

� in probability, if limn!1 P .jXn �X j > "/ D 0,

� in distribution, if limn!1 FXn.x/ D FX .x/ for all x where FX is continuous at x.

� in Lp, if limn!1E
�
jXn �X jp� D 0 for some p � 1,

� weakly in L2, if we are considering Xn; X 2 L2, and limn!1EŒXn�� D EŒX��, 8� 2 L2.

Note that limn!1
R
fd�Xn D

R
fd�X for all bounded, continuous f is equivalent to convergence in

distribution.

Remark 7.27. In this remark, we will try to clarify some differences between these convergences. There are
a lot of connections to explore, which we are not aiming to do here. Suppose � D Œ0; 1� with Lebesgue
measure m, and consider the following examples:
(i) Xn.!/ D n1fŒ0;1=n�g,
(ii) Xn.!/ D 1fŒi=2k ;.iC1/=2k�g where n D 2k C i with 0 � i < 2k ,

(iii) X2n.!/ D !;X2n�1.!/ D 1 � ! , and
(iv) Xn is i.i.d. sequence of uniform distributions with mean 0 and variance 1.
� Now, (i) converges to 0 almost surely (a.s.), however, does not converge in L1. On the other hand, (ii)

converges in L1 whereas does not converge for any x 2 Œ0; 1�.
� (iii) obviously converges in distribution to the uniform distribution on Œ0; 1�. However, it does not

converge in probability.
� (iv) converges to 0 weakly in L2, whereas it trivially converges to uniform measure in distribution. To

see the weak convergence in L2, note that fXng is an orthonormal sequence. Given any � 2 L2, we can
write

� D

1X
nD1

anX
n
C �>; where an´ EŒ�Xn�

by Bessel’s Inequality (1828),
P1
nD1 janj

2 � EŒj�j2� < 1. In particular, an ! 0 and this is exactly what
we need to conclude Xn converges weakly in L2.

Exercise 7.28. Prove that, if Xn ! X in L2, then Xn ! X in probability.
[Hint: Chebyshev’s inequality.]

We left reader to recall cdf and pdf of some common distributions:
(i) Bernoulli, (ii) Binomial, (iii) Geometric, (iv) Uniform, (v) Exponential

We say X have normal distribution, denoted as X � N .�; �2/, if it has the pdf

f .x/ D
1

p
2��2

e
�
.x��/2

2�2
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Check that EŒX� D � and VarŒX� D �2. Moreover, aX C b � N .� C b; a2�2/ and if Y � N .�; �2/
independent of X , then X C Y � N .� C �; �2 C �2/. We say Z have standard normal distribution if
Z � N .0; 1/.

We say X D .X1; : : : ; Xn/
> has a multivariate Gaussian distribution if any linear combination of

X1; : : : ; Xn has normal distribution. In particular, if X1; : : : ; Xn are independent and have normal dis-
tribution, then X have multivariate Gaussian distribution. Also, if X1; : : : ; Xn have Gaussian distribution,
then they are independent if and only if they are pairwise uncorrelated. We say that Z D .Z1; : : : ; Zn/ has
a standard Gaussian distribution if Z1; : : : ; Zn has independent standard normal distribution. Equivalently,
we may define X D .X1; : : : ; Xn/

> has multivariate Gaussian distribution if there exists m � n, a vector
� D .�1 : : : ; �n/ and a n �m matrix A such that X D �C AZ where Z D .Z1; : : : ; Zm/> has standard
Gaussian distribution. We write X � N .�;†/ where

†i;j D Cov.Xi ; Xj / D E
�
.Xi � �i /.Xj � �j /

�
D A>i E

�
ZZT

�
Aj D A

>
i Aj

that is, † D A>A. If the covariance matrix † is invertible, then the density of X � N .�;†/ is given by

fX .x/ D
1p

.2�/nj†j
exp

�
�
1
2
.x � �/>†�1.x � �/

�
The crucial reason why the normal distribution is fundamental is given by the following theorem.

Theorem 7.29 (Central Limit Theorem). Suppose fXngn�1 are i.i.d. with EŒXn� D � and Var.Xn/ D �2.

Denote the sample mean NXn ´ 1
n

Pn
iD1Xi and Zn ´

p
n
NXn��
�

. Then, Zn converges to N .0; 1/ in
distribution.

Let us also quickly recall the strong Law of Large Numbers (SLLN).

Theorem 7.30 (Strong Law of Large Numbers). Let X1; X2; � � � be pairwise independent identically
distributed random variables, where EX1 exists. 10. Then the sample mean NXn ´ 1

n

Pn
iD1Xi converges

to EX1 almost surely.

10That is, EX�1 <1, where X�1 D �min.0; X1/

50



7.3 Conditional Expectation

We have an important result which characterizes the notion of measurability with respect to the � -algebra
of a measurable function:

Theorem 7.31 (Doob-Dynkin). LetX; Y be random variables. Then Y is measurable with respect to �.X/
if and only if Y D h.X/ for some (Borel) measurable h W R! R.

Definition 7.32 (Conditional Expectation). Let .�;F ;P / be a probability space, and X 2 L1. Consider a
sub � -algebra H � F . We call EŒX jH� 2 L1 the conditional expectation of X given H, satisfying

� EŒX jH� measurable with respect to H, and

�
R
H EŒX jH�dP D

R
H XdP for all H 2 H.

Furthermore, if Y is an another random variable, we denote EŒX jY �´ EŒX j�.Y /�.

Remark 7.33.
(i) By Doob-Dynkin lemma, EŒX jY � D h.Y / for some measurable h.
(ii) Equivalent condition to second condition is

EŒYEŒX jH�� D EŒYX�

for all Y measurable with respect to H. If H D �.Z/ for some Z, then we can further write Y D g.Z/ and
consider all Borel measurable functions g by Doob-Dynkin lemma.

(iii) Conditional expectation exists and unique by the Radon-Nikodym theorem. Namely, �.H/ ´R
H XdP is a measure for .�;H/, which satisfies �� PjH.

(iv) X itself satisfies the second bullet. However, may not be H measurable.

Example 7.34. If H D f;; �g, then EŒX jH� D EŒX�.

Example 7.35. If X is independent of H, that is,

P .fX 2 Bg \H/ D P .X 2 B/P .H/ for all B 2 B.R/;H 2 H

then EŒX jH� D EŒX�. To see this, constanct functions are always measurable. Hence, take H 2 H, and
then Z

H

XdP D EŒX1fHg� D EŒX�EŒ1fHg� D
Z
H

EŒX jH�dP

Example 7.36. If X is measurable with respect to H, then EŒX jH� D X .

Example 7.37. Suppose �1; �2; � � � is a partition of �, where P .�k/ > 0 for all 1 � k. Let H D
�.�1; �2; � � � /. Then we claim

EŒX jH� D
EŒX1fX2�kg�

P .�k/
D

1

P .�k/

Z
�k

XdP on �k

To see this, note that EŒX jH� is constant on each �k . Therefore, it is measurable with respect to H. Then
we need to check the second condition, and it suffices to check for H D �k , which is trivial.

Remark 7.38. As it follows from the example above, if Y is a random variable with discrete values, then

EŒX jY D y� D
EŒX1fYDyg�
P .Y D y/
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Example 7.39. Consider two independent fair coin flips X1, X2. Then

EŒX1jX1 CX2� D

8̂̂̂<̂
ˆ̂:

EŒX11fX1CX2D0g�
P.X1CX2D0/

if X1 CX2 D 0
EŒX11fX1CX2D1g�

P.X1CX2D1/
if X1 CX2 D 1

EŒX11fX1CX2D2g�
P.X1CX2D2/

if X1 CX2 D 2

D
X1 CX2

2

Intuitively, if X1 C X2 is 0 or 1, we know the value of X1. If the sum is 1, we have no information about
X1.

Example 7.40. Consider X; Y with joint density function f .x; y/. That is,

P ..X; Y / 2 B/ D

Z
B

f .x; y/dxdy for B 2 B.R2/

If EŒjg.X/j� <1, then

EŒg.X/jY � D h.Y /; where h.y/ D
1R

f .x; y/dx

Z
g.x/f .x; y/dx

To verify this, since h itself is a measurable function, h.Y / is measurable with respect to �.Y /. Now, let
A D fY 2 Bg for some B 2 B.R/. Then,Z

A

h.Y /dP D

Z
h.Y /1fY2BgdP D

Z
R2
h.y/1fy2Bgf .x; y/dxdy D

D

Z
R
h.y/1fy2Bg

� Z
R
f .x; y/dx

�
dy D

Z
R2

1fy2Bgg.x/f .x; y/dy D
Z
A

g.X/dP

Proposition 7.41 (Properties of Conditional Expectation).

(Linear) EŒaX C Y jH� D aEŒX jH�C EŒY jH�.

(Monotone) If X � Y (almost surely), then EŒX jH� � EŒY jH�.

(Jensen’s inequality) If � is convex, EjX j;EŒj�.X/j� <1, then �.EŒX jH�/ � EŒ�.X/jH�.

(Tower property) If H � G, then EŒEŒX jH�jG� D EŒEŒX jG�jH� D EŒX jH�.

� If X 2 H, EjY j <1, EjXY j <1, then EŒXY jH� D XEŒY jH�.

Remark 7.42. Let’s note some particular cases. If �.x/ D x2, then .EŒX jH�/2 � EŒX2jH�. Since by taking
H D f;; �g, we also conclude .EŒX�/2 � EŒX2�. By the same choice of H, EŒEŒX jG�� D EŒX�.

Example 7.43 (Random walk). Let �k be i.i.d. random variables with mean �. Define Zn ´
Pn
kD1 �k .

Then,
EŒZnC1j�1; : : : ; �n� D EŒZn C �nC1j�1; � � � ; �n� D Zn C �
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7.4 Stochastic Processes

We now introduce the notion of filtrations, to accomodate stochastic processes.

Definition 7.44 (Filtration). Let I be either N or RC. We say F D fFngn2I is a filtration if Fk � Fn
whenever k � n.

Stochastic process is a collection of random variables, indexed by an ordered set I. We will work in
continuous time setting with I D Œ0; T �, and say that stochastic process X is a mapping Œ0; T � � � ! R.
Instead of viewing a stochastic process as fXt W 0 � t � T g, it is also typical to view it as family of paths
fX�.!/; ! 2 �g.

Example 7.45. Typically, filtration is generated by a stochastic process. LetX be a stochastic process. Then

FX ´ fFXt gt2Œ0;T �; FXt ´ �.Xs W s � t /

is the filtration generated by X .

Definition 7.46 (Adaptedness). We say a stochastic process X is adapted to the filtration F D fFtgt�0 if
Xt is Ft measurable.

Remark 7.47.

(i) X is always adapted to its own filtration FX . Recall the random walk Zn D
Pn
kD1 �k . Here, Z is

adapted to the filtration formed by Fn D �.�1; : : : ; �n/, which is the same filtration as FZ .

(ii) We are simplifying the discussion here by considering adapted processes. In fact, one needs to con-
sider progressively measurable processes. We call a processX progressively measurable, if restriction
of X onto Œ0; t � is B.Œ0; t �/ � Ft -measurable for all t . Similarly, we also omit the discussion around
what it means for two process to be equal.

Theorem 7.48 (Kolmogorov’s Extension). Let �t1;:::;tn be a family of distributions on Rn satisfying

�t1;:::;tn.A1� � � ��Ai�1�R�AiC1� � � ��An/ D �t1;:::;ti�1;tiC1;:::;tn.A1� � � ��Ai�1�AiC1� � � ��An/

for all i and Ai Borel measurable subsets of R. Then, there exists .�;F ;P / and a stochastic process X
where joint distribution of .Xt1 ; : : : ; Xtn/ is given by �t1;:::;tn .

Theorem 7.49 (Kolmogorov’s Continuity). SupposeX is a stochastic process where there exists ˛; ˇ; C >

0 such that
E
�
jXt;sj

˛
�
� C jt � sj1Cˇ ; 8s; t 2 Œ0; T � where Xt;s ´ Xs �Xt

Then, for any  2 .0; ˇ=˛/, X�.!/ is  -Hölder continuous almost surely.11

Definition 7.50 (Stopping time). We say � W � ! Œ0; T � is a F -stopping time if f� � tg 2 Ft for all
t 2 Œ0; T �. Moreover, we introduce the � -field corresponding to the stopping time � as

F� ´
n
A � � W A \ f� � tg 2 Ft ; 80 � t � T

o
Intuitively, being measurable with respect to F� implies that the function is determined by .�; XŒ0;��/. Let
us also note that fŒ0; t �;80 < t < T g creates a basis for the B.Œ0; T �/.

Lemma 7.51. Suppose A � Rd is closed. Then, � D infft > 0 W Xt 2 Ag is a FX stopping time.

In case the filtration is generated by a stochastic process X , which is typically the case, � is a stopping
time means we can determine if ’� ringed before time t ’ by knowing the path of X from 0 to t (denoted
typically as XŒ0;t�).

11To be more precise, one needs to say there exists a modification of X that is  -Hölder continuous almost surely.
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7.5 Markov Processes

As we have discussed the measure-theoretic foundations, let us revisit the definition of Markov processes.
Suppose X is F D fFtgt�0 adapted process. We say X is a Markov process if, for any 0 � s < t � T

and bounded Borel measurable ', it holds

E
�
'.Xt /jFs

�
D E

�
'.Xt /jXs

�
a.s.

Roughly, this means fXt W t � sg and fXt W t � sg are independent given Xs . By Doob-Dynkin’s Lemma
7.31, EŒ'.Xt /jXs� D  .Xs/ for some Borel measurable  .

Moreover, we say X is strong Markov process if, for any two stopping time �; � satisfying � � � ,

E
�
'.X� /jF�

�
D E

�
'.X� /j�.�;X�/

�
a.s.

In this case, E
�
'.X� /j�.�;X�/

�
D  .�;X�/.

To see the independence, let B 2 F and A 2 F� and observe that,

P
�
fX� 2 Bg \ Aj�.�;X�/

�
´ E

�
1fX�2Bg1fAgj�.�;X�/

�
D E

�
EŒ1fX�2BgjF��1fAgj�.�;X�/

�
P
�
X� 2 Bj�.�;X�/

�
P
�
Aj�.�;X�/

�
´ E

�
1fX�2Bgj�.�;X�/

�
E
�
1fAgj�.�;X�/

�
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7.6 Martingales

Now, we are ready to give the definition of martingales. These are, in a rough sense, processes that do not
drift deterministically.

Definition 7.52 (Martingale). Let .�;F ;F ;P / be a filtered probability space. We say a stochastic process
Mt is a .F ;P /-martingale if

� M is adapted to F .

� EŒjMt j� <1 for all t .

� EŒMt jFs� DMs for all s < t .

Exercise 7.53. Show that if Mt is a martingale, EŒMt � D EŒM0�. In the discrete case, we assume
EŒMnC1jFn� DMn. Show that EŒMnCkjFn� DMn for any 1 � k.

Next, we define the sub and super martingales. Roughly, increasing and decreasing processes, similar to
the definition of martingale.

Definition 7.54. We say a stochastic process Mt is a .F ;P /-submartingale (supermartingale) if

� M is adapted to F .

� EjMt j <1 for all t .

� EŒMt jFs� � .�/Ms for all s < t .

We can construct martingales from a given process. We will handle some particular cases, and for the
sake of examples, we will consider discrete time.

Example 7.55 (Asymmetric simple random walk). Let �i be 1 with probability p and �1 with probability
q D 1 � p. Then,

EŒZnC1jFZn � D Zn C p � q; where Zn´

nX
kD1

�k

hence if p � q � 0 then Zn is a submartingale, and if p � q � 0 then Zn is a supermartingale.

Exercise 7.56. Show that Mn´ Zn C .p � q/n is a martingale.

Exercise 7.57 (Random walk). Suppose �k’s are i.i.d. with mean 0 and variance �2. Then Zn D
Pn
kD1 �k

and Z2n � n�
2 are both martingales.

Example 7.58. Mn ´ .q=p/Zn is a martingale, where Zn as in Example 7.55. It is obviously adapted to
the filtration FZn . Next,

EjMnj � .q=p/
n
C .q=p/�n <1

and
EŒMnC1jFZn � D EŒ.q=p/Zn.q=p/�nC1 jFZn � DMn

h
.q=p/1p C .q=p/�1q

i
DMn

Let us note further properties of martingales.

Theorem 7.59.

� If Mn is a martingale, and � a convex function where Ej�.Mn/j < 1, then �.Mn/ is a submartin-
gale. In particular, if EjMnj

2 <1, then M 2
n is a submartingale.
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� If Mn is a submartingale, and � is non-decreasing convex function where Ej�.Mn/j < 1, then
�.Mn/ is a submartingale.

� If Mn is a martingale where EjMnj
2 <1, then for any 0 � ` � k � m � n,

EŒ.Mn �Mm/Mk� D 0 and EŒ.Mn �Mm/.Mk �M`/� D 0

� If Mn is a martingale where EjMnj
2 <1, then

M 2
n �

nX
kD1

EŒ.Mk �Mk�1/
2
jFk�1�

is a martingale.

Proof. Exercise.

Suggested Exercises. Durrett, 3rd edition. 5.1, 5.2.
Next, we will discuss some connections to Markov chains.

Theorem 7.60. Let Xn be a discrete Markov chain with state space S and transition matrix p. Assume
f W N � S ! R satisfies,

�
P
y2S p

n.x; y/jf .n; y/j <1

�
P
y2S p.x; y/f .nC 1; y/ D f .n; x/

holds for all x 2 S and 0 � n. Then Mn´ f .n;Xn/ is a martingale with respect to the filtration of Xn.

Example 7.61 (Branching Process). Let Xn be the size of the population at n-th generation. Suppose each
member gives birth to random offsprings. Let Y n

`
be i.i.d. random variables, with mean �, for all `; n 2 N.

Let p.k;m/ D P .
Pk
`D1 Y

n
`
D m/, which gives the distribution of the size of the population for the next

generation.
Note that

EŒXnC1jXn D k� D
X
m2N

p.k;m/m D E

"
kX
`D1

Y n`

#
D �k

That is, EŒXnC1jXn� D �Xn. Moreover,

ExŒXn� D ExŒExŒXnjXn�1�� D �ExŒXn�1� D �
nx

Set
Mn´ f .n;Xn/´

Xn

�n

Then Mn is a martingale. To see this, first,X
m2N

pn.k;m/
m

�n
D

X
z2N

pn�1.k; z/
X
m2N

p.z;m/
m

�n

D

X
z2N

pn�1.k; z/
z

�n�1
D k <1

and X
m2N

p.k;m/
m

�nC1
D

k

�n
D f .n; k/

hence we conclude by the theorem that Mn is a martingale.
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7.7 Optional Stopping

We now present an important theorem, which allows us to determine if a martingaleMn is still a martingale
if we consider M� where � is a stopping time. In gambling, this result will imply that if you are betting
on a martingale, you cannot increase your expected return by the option of leaving the game (stopping).
An important implication is that if you create a strategy that almost surely wins in a fair game, such as the
doubling strategy, then your account must have a chance to blow up. This is because it cannot be uniformly
integrable, as defined below. (See the following remark (iii), (iv))

Theorem 7.62 (Optional Stopping). Let Mn be a (sub,super) martingale and suppose �; � are stopping
times with � � � . If

lim
R!1

sup
n2N

EjM�^n1fjM�^nj�Rgj D 0 .i.e. M�^n is uniformly integrable/

then
EŒM� jF��.�;�/ DM�

Remark 7.63. (i): Let us recall the definition of the � -algebra generated by a stopping time;

F� ´
n
A 2 [t>0Ft W A \ f� � tg 2 Ft ; 8t > 0

o
and remark that the � -algebra of a stopping time indeed relies on the filtration of the stochastic process it
depends on.

(ii): If M�^n is uniformly integrable, then EŒM� � D EŒM0�.
(iii): Note that, if � is almost surely bounded, then M�^n is uniformly integrable.

In particular, as n ^ � is bounded for any � , Mn^� is a (sub,super) martingale.
(iv): If jMn^� j < C almost surely for all n 2 N, again the condition of the Theorem 7.62 is satisfied.
(v): If Mn itself is uniformly integrable, then Mn^� is uniformly integrable for any stopping time � .

An important result for applications is as follows;

Theorem 7.64. Suppose Mn is a (sub, super) martingale and satisfies EŒjMnC1 �MnjjFn� < C almost
surely. If � is a stopping time with E� <1, then Mn^� is uniformly integrable.

Above theorem is a generalization of Wald’s identity. To see this, let X1; X2; � � � be i.i.d. integrable
random variables and set Sn D

Pn
kD1Xk . We have seen that Mn D Sn � �n is a martingale, where

EŒjMnC1 �MnjjFn� D EŒjXnC1 � �jjFn� < EjX1j C j�j.

Theorem 7.65 (Wald’s Identity). Let � be a stopping time with EŒ� � <1. Then,

EŒS� � D �EŒ� �

Let us also present Wald’s Second Identity.

Theorem 7.66 (Wald’s Second Identity). Let � be a stopping time with EŒ� � <1. Then,

EŒ.S� � ��/
2� D �2EŒ� �

Theorem 7.67 (Doob’s supermartingale inequality). Let Xn be a supermartingale, where Xn � 0 for all n.
Then for � > 0,

P .sup
n
Xn > �/ �

1

�
EX0
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Next, we will discuss Doob’s decomposition theorem. We say a stochastic process Hn is F -predictible,
if H0 is F0 and Hn is Fn�1 measurable. As the name suggests the intuition, we can predict the Hn before
the time n.

Theorem 7.68 (Doob’s Decomposition Theorem). Let Xn be any submartingale. Then there exists unique
martingale Mn and a predictible increasing process Hn with H0 D 0 such that

Xn DMn CHn

Next, we will consider some examples. First, we will consider a trading strategy. To formalize this, we
denote Sn as the price of an asset, andHn denotes the strategy, namely how much asset we hold. We require
that Hn is predictible. Since we observe a price at n, we should have known how much we invest at n � 1.
Now, wealth is given by

Wn D W0 C

nX
kD1

Hk.Sk � Sk�1/ (7.3)

Here, Hk denotes the amount of asset we have at Sk�1 and wealth is updated by the price action.

Proposition 7.69. Suppose Sn is a martingale, and Hn is a predictible bounded process. Then, (7.3) is a
martingale.

Suppose we have a stopping time � to determine when to stop trading the asset, which is almost surely
bounded. Then W� is a martingale, hence expected return is 0.

Example 7.70 (Simple random walk). Let X1; X2; � � � be i.i.d. random variables taking values 1;�1 with
probabilities 1=2. Set Sxn D x C

Pn
kD1Xk , which is a martingale. Consider a � x � b, and define a

stopping time
�xa;b D inffn � 0 W Sxn � a or b � Sxn g

�
D Va ^ Vb

�
Note that jSn^� j � jaj C jbj, therefore S� is a martingale. To avoid small terms, assume b; a; x are all
integers. Now,

x D ESx0 D ESx� D aP .Sx� D a/C b.1 � P .Sx� D a//

That is, we computed

P .Va < Vb/ D P .Sx� D a/ D
b � x

b � a

Next, let us compute that E�x
a;b
D E� for the symmetric case. Note that we cannot use Wald’s identity

directly, because it will yield 0 D E� � 0. Therefore, let Mn D S2n � n which is a martingale (Exercise).
Note that

jMn^� j � a
2
C b2 C �

From the study of Markov chains we know E� <1, and hence by the Dominated Convergence Theorem,

lim
n!1

EŒMn^� � D EŒM� �

On the other hand, by the Optional Stopping Theorem, x2 D EŒM0� D EŒMn^� � and by letting n!1;

x2 D EM� D a
2x � b

a � b
C b2

a � x

a � b
� E�

That is,
E� D .x � a/.b � x/
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Now, let’s handle the asymmetric case. Let Xk takes values 1;�1 with probabilities p; q respectively.
We have seen that

Mn D .q=p/
Sxn

is a martingale. Let �x
a;b
D Va ^ Vb as before. Then,

jMn^� j � .q=p/
a
C .q=p/�a C .q=p/b C .q=p/�b

which is uniformly bounded. Therefore,

.q=p/x D EM0 D EM� D .q=p/
aP .Va < Vb/C .q=p/

b.1 � P .Va < Vb//

which yields

P .Va < Vb/ D
.q=p/x � .q=p/b

.q=p/a � .q=p/b

Note that Sn � .p � q/n is also a martingale. However, it does not help to solve the problem.

Example 7.71 (Doubling Strategy). Suppose Sn D
Pn
kD1Xk is a symmetric simple random walk starting

from 0. Let � D inffn � 0 W Xn D 1g, which tells that the gambler will stop when there is a succesful bet.
Set Hn D 2n�1, meaning that at each step gambler doubles the bet. Then the wealth is given by

Wn D

nX
kD1

2k�1Xk and because
nX
kD1

2k�1 D 2n � 1; W� D 1

Note that EW� D 1 ¤ 0 D EW0, and hence Wn^� is not uniformly integrable.

Suggested Exercises. Durrett, 3rd edition. 5.6, 5.7, 5.8.
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8 Appendix

Lemma 8.1. Consider a bounded sequence jai j < C , and suppose there exists a sequence of indices nk
such that

a1 C � � � C ank
nk

! a

where limk!1 nkC1=nk ! 1 and limk!1 nk D1. Then

lim
n!1

a1 C � � � C an

n
! a

Lemma 8.2. For any function f and g with range R, it holds

sup
x
.f .x/C g.x// � sup

x
f .x/C sup

x
g.x/

and hence
j sup
x
f .x/ � sup

x
g.x/j � sup

x
jf .x/ � g.x/j

Theorem 8.3 (Banach Fixed Point). Let .S; d / be a complete metric space and T W S ! S be a contraction
mapping with constant 0 < � < 1, i.e.

d.T .x/; T .y// � �d.x; y/

Then there exists a unique fixed point x� of T , i.e.

T .x�/ D x�
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