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Abstract. This is a presentation on Fortuin-Kasteleyn Percolation Model, focused on proving
positive association and monotonicity properties. Entire presentation follows [1], and not self-
explanatory.

1. Brief Introduction to General Construction

We are interested in finite subgraph G = (V,E) of Zd where edges are formed by nearest neigh-
bourhoods. Moreover, attribute a spin variable from Σ to each vertex. Hamiltonian is given by;

HfG(σ) = −
∑
xy∈E

σx · σy (1.1)

Identify each σx by a reference measure σ0 on Σ, and endow ΣV with product measure. Gibbs measure
is then given by1

µfG,β [f ] =
∫

ΣV f(σ) exp[−βHfG(σ)]dσ∫
ΣV exp[−βHfG(σ)]dσ

(1.2)

2. Potts Model

Let Σ has q elements with the property that

a · b =
{

1 if a = b

− 1
q−1 otherwise

(2.1)

and endow with uniform measure. Therefore, since hamiltonian is ferromagnetic, spins are favored by
probability 1/q while expected is constant 0.

3. Fortuin-Kasteleyn Percolation Model

Aim of the Percolation Model is to embed spin interactions to a graph, where distribution is carried
to a binary model of open/close edges. Surely distribution of edges cannot be independent, as it was
independent for the vertices of Potts Model. However, measure can be simplified by determining a
weight q for a number of clusters.

φξG,p,q[w] = po(w)(1− p)c(w)qk(wξ)

ZξG,p,q
(3.1)

If q = 1, it is called Bernoulli percolation. Let me state a calculation

φξG,p,q[w = 1|wE−{e} = ψ] =
{

p if x↔ y in ψξ
p

p+q(1−p) otherwise
(3.2)

Note that if they are already in the same cluster then they are connected in an independent manner.
Otherwise, connecting clusters is penaltized. Roughly, each cluster forms a subgraph behaving as a
Bernoulli model.

Coupling between Fortuin-Kasteleyn Percolation Model and Potts Model is given by
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1Boundary conditions are given by µf

G,β
[·|σx = b, x ∈ ∂G]
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Proposition 1. If w is distributed according to φ0
G,p,q, assign each cluster an i.i.d. spin from reference

measure of Potts model. Then σ is distributed according to q-state Potts model µfG,β,q where

β = −q − 1
q

log(1− p) (3.3)

Sketch. (Not to present.) For each cluster, there exists q states equally likely. Hence, measure on
product space of (w, σ) is given by independent part of percolation measure. Summing over compatible
w’s, role of β can be attributed to the edges between clusters(of fixed σ), where sum over clusters add
up to 1 since they were independent.

Therefore, correlations can be respresented as
µfG,β,q[σx · σy] = φ0

G,p,q[x↔ y] and µbG,β,q[σx · b] = φ1
G,p,q[x↔ y] (3.4)

4. Positive Association and Monotonicity

Since percolation model is binary, it yields a natural partial ordering for configurations. This allows
us to define events that is closed under increasing configurations.
Definition 1. Event A is called increasing if w ∈ A and w ≤ w′ implies w′ ∈ A.
Note 1. Smallest non-empty increasing event contains only the configuration where all edges are
open, denoted as wo. It is contained in every non-empty increasing event.
Definition 2. We say µ is stochasitcally dominated by ν if for any increasing event A, µ[A] ≤ ν[A].

Consider the product space {0, 1}E × {0, 1}E with a probability measure P on (w, w̃).2 Suppose
the law of w is µ and the law of w̃ is ν. If P [w ≤ w̃] = 1, then µ is stochastically dominated by ν:

µ[A] = P [w ∈ A] = P [w ∈ A, w ≤ w̃] ≤ P [w̃ ∈ A] = ν[A] (4.1)
Now, for two Bernoulli percolation model with p ≤ p′, it is straightforward to construct P . Assign
each edge e an uniform [0, 1] random variables Ue and define w, w̃ as follows

we =
{

1 if Ue ≥ 1− p
0 otherwise

and w̃e =
{

1 if Ue ≥ 1− p′

0 otherwise
(4.2)

In words, we consider a single space {0, 1}E and a product measure given by Ue’s. P is defined
naturally in a way that it satisfies law of w and w̃, but more importantly, w ≤ w̃ for any realization
of Ue’s.

In general, it is not straightforward to construct P . Next lemma provides a convenient criteria for
existence of such measure P .
Lemma 1. Suppose µ and ν are strictly positive measures on {0, 1}E and for any increasing config-
urations ψ ≤ ψ′,

µ[we = 1|w|E−{e} = ψ] ≤ ν[we = 1|w|E−{e} = ψ′] (4.3)
Then there exists a measure P with P [w ≤ w̃] = 1 such that w and w′ have laws µ and ν.
Proof. Consider the space {0, 1}E and associate each edge with an exponential clock3 and a collection
of independent uniform [0, 1] random variables Ue,k. Note that with probability 1, clocks ring at
different times.

Define continuous time Markov chain (wt, w̃t) as follows; for each ring of a clock, allow system
jump to a new configuration, where jump probabilities only depending on the current state:

wte =
{

1 if Ue,k ≥ µ[we = 0|w|E−{e} = wt
−

|E−{e}]
0 otherwise

w̃te =
{

1 if Ue,k ≥ ν[we = 0|w|E−{e} = wt
−

|E−{e}]
0 otherwise

(4.4)

2Note that it cannot be a product measure.
3A cumulative sequence of i.i.d. exponential variables, say

{∑k exp(1)}
}
k
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Note that chains are irreducable, since all states are reachable. It is only left to show that µ and ν
are stationary measures. Then law of wt converges to µ and similarly w̃t converges to ν, moreover,
they preserve their orderings hence we get P [w ≤ w̃] = 1.

Let p(ψ,ψ′) be the jump probability.4 It is 0, if ψ and ψ′ differ by more than one edge. Hence,
denote ψe as same as ψ expect the edge e. We need to show

µ[ψ]p(ψ,ψ) +
∑
e

µ[ψe]p(ψe, ψ) = µ[ψ] (4.5)

Denote Re the event clock e ringed first. Observe that p(ψe, ψ|Re) = p(ψ,ψ|Re) because ψe|E−{e} =
ψ|E−{e}. This probability is then given by;

P (Ue,k ≥ µ[we = 1− ψ|{e}|w = ψ on E − {e}]) = µ[ψ]
µ[ψ] + µ[ψe]

(4.6)

Consider p(ψ,ψ), i.e. chain stays at the same state.

p(ψ,ψ) =
∑
e

P (Re)
(

µ[ψ]
µ[ψ] + µ[ψe]

)
(4.7)

Hence 4.5 can be re-written as;∑
e

P (Re)
(
µ[ψ] µ[ψ]

µ[ψ] + µ[ψe]
+ µ[ψe]

µ[ψ]
µ[ψ] + µ[ψe]

)
(4.8)

Rest is a simple calculation by noting that
∑
e P (Re) = 1 �

Theorem 1. (Positive Association)

• For any increasing A and boundary conditions ξ ≤ ξ′

φξG,p,q[A] ≤ φξ
′

G,p,q[A] (4.9)

• For any increasing event A and any p ≤ p′,

φξG,p,q[A] ≤ φξG,p′,q[A] (4.10)

• (Fortuin-Kasteleyn-Ginibre Inequality) For any increasing events A and B,

φξG,p,q[A]φξG,p,q[B] ≤ φξG,p,q[A ∩ B] (4.11)

Proof. By Lemma, it is sufficient to show that for e = xy ∈ E and ψ ≤ ψ′

φξG,p,q[we = 1|w|E−{e} = ψ] ≤ φξ
′

G,p,q[we = 1|w|E−{e} = ψ′] (4.12)

which holds by 3.2 because if x and y are connected in ψξ, they are connected in (ψ′)ξ and furthermore
in (ψ′)ξ′ . If this is not the case, p/(p+ q(1− p)) ≤ p hence inequality follows. For monotonicity,

φξG,p,q[we = 1|w|E−{e} = ψ] ≤ φξG,p′,q[we = 1|w|E−{e} = ψ′] (4.13)

follows again by 3.2 immediately because
1

1 + q 1−p
p

≤ 1
1 + q 1−p′

p′

(4.14)

For FKG, define µ = ψξG,p,q and ν = µ[·|B] but ν is not strictly positive. We claim statement of lemma
still holds. Markov chain restricted to B is still irreducable, and for the condition

φξG,p,q[we = 1|w|E−{e} = ψ] ≤ φξG,p,q[we = 1|w|E−{e} = ψ′|B] (4.15)

we only need to check it for ψ′ ∈ B. It is sufficient because wo ∈ B(which surely satisfies ψ ≤ wo),
and markov chain will jump only to states of B: suppose markov chain is at the configuration ψ′ ∈ B,
and suppose edge e ringed. If ψ′|{e} was closed, ψ′e is also in B. If it was open, and ψ′e /∈ B then the

4Jump probabilities are time-homogeneous, since clocks are memoryless.
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probability it will be closed given B is 0 hence stays open surely. Finally, 4.15 holds since ψ ≤ ψ′

preserves connectedness and ψξG,p,q[B] ≤ 1. As a consequence,

φξG,p,q[A] = µ[A] ≤ ν[A] =
ψξG,p,q[A ∪ B]
ψξG,p,q[B]

(4.16)

�

Corollary 1. By comparison of boundary conditions, free and wired boundary conditions are extremal;
φ0
G,p,q[A] ≤ φξG,p,q[A] ≤ φ1

G,p,q[A] (4.17)
for any increasing event A.

Proof. Apply (4.9) with boundary conditions as singletons for free, and {∂G} for wired. �

Corollary 2. The functions β 7→ µfG,β,q[σx · σy] and β 7→ µbG,β,q[σx · b] are non-decreasing.

Proof. 3.4 and 4.10 implies the result, by noting that

β′ = q − 1
q

(
1

1− p

)
> 0 (4.18)

�
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