FORTUIN-KASTELEYN PERCULATION MODEL

MELIH ISERI

ABSTRACT. This is a presentation on Fortuin-Kasteleyn Percolation Model, focused on proving
positive association and monotonicity properties. Entire presentation follows [1], and not self-
explanatory.

1. BRIEF INTRODUCTION TO GENERAL CONSTRUCTION

We are interested in finite subgraph G = (V, E) of Z? where edges are formed by nearest neigh-
bourhoods. Moreover, attribute a spin variable from ¥ to each vertex. Hamiltonian is given by;

HE(0) = — Z Oy - Oy (1.1)

Identify each o, by a reference measure o on ¥, and endow XV with product measure. Gibbs measure
is then given by!
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2. PorTs MODEL
Let ¥ has ¢ elements with the property that

1 if =0
ab={ | v (2.1)

-7 otherwise

and endow with uniform measure. Therefore, since hamiltonian is ferromagnetic, spins are favored by
probability 1/q while expected is constant 0.

3. FORTUIN-KASTELEYN PERCOLATION MODEL

Aim of the Percolation Model is to embed spin interactions to a graph, where distribution is carried
to a binary model of open/close edges. Surely distribution of edges cannot be independent, as it was
independent for the vertices of Potts Model. However, measure can be simplified by determining a
weight q for a number of clusters.

¢
PO (1 — p)elw) gh(w)
d)g‘m,q[w] - 3 (3.1)

G,p,q

If ¢ = 1, it is called Bernoulli percolation. Let me state a calculation
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¢ D ifx < yinvy
—wp_ oy =] = 3.2
¢G7p7q[w wi {e} vl {m otherwise (3:2)

Note that if they are already in the same cluster then they are connected in an independent manner.
Otherwise, connecting clusters is penaltized. Roughly, each cluster forms a subgraph behaving as a
Bernoulli model.

Coupling between Fortuin-Kasteleyn Percolation Model and Potts Model is given by

Date: October 15, 2018.
IBoundary conditions are given by ,u,fG 3 [[loz = b,z € 0G]
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Proposition 1. If w is distributed according to (b%’p’q, assign each cluster an i.i.d. spin from reference

measure of Potts model. Then o is distributed according to q-state Potts model ,ué . where

q—1

f=- log(1 —p) (3.3)

Sketch. (Not to present.) For each cluster, there exists g states equally likely. Hence, measure on
product space of (w, o) is given by independent part of percolation measure. Summing over compatible
w’s, role of B can be attributed to the edges between clusters(of fixed o), where sum over clusters add
up to 1 since they were independent.

Therefore, correlations can be respresented as
0 b 1
Hopgloo 03] = 0% palr oyl and gy g glon -] = 65, gl ¢ 9] (3.4)
4. POSITIVE ASSOCIATION AND MONOTONICITY

Since percolation model is binary, it yields a natural partial ordering for configurations. This allows
us to define events that is closed under increasing configurations.

Definition 1. Event A is called increasing if w € A and w < w’ implies w’ € A.

Note 1. Smallest non-empty increasing event contains only the configuration where all edges are
open, denoted as w®. It is contained in every non-empty increasing event.

Definition 2. We say p is stochasitcally dominated by v if for any increasing event A, u[A] < v[A].

Consider the product space {0,1}¥ x {0,1}¥ with a probability measure P on (w,w).> Suppose
the law of w is p and the law of w is v. If Plw < @] = 1, then u is stochastically dominated by v:

A = Plw € A] = Plw € A,w < ] < Pl € A] = v[A] (4.1)

Now, for two Bernoulli percolation model with p < p/, it is straightforward to construct P. Assign
each edge e an uniform [0, 1] random variables U, and define w, @ as follows

1 ifU.>1-p 3 1 ifU, >1—9p
We = i and We = i (4.2)
0 otherwise 0 otherwise

In words, we consider a single space {0,1}¥ and a product measure given by U.’s. P is defined
naturally in a way that it satisfies law of w and w, but more importantly, w < @ for any realization
of U,.’s.

In general, it is not straightforward to construct P. Next lemma provides a convenient criteria for
existence of such measure P.

Lemma 1. Suppose p and v are strictly positive measures on {0, 1} and for any increasing config-
urations ¥ < ',

plwe = wip_ey = Y] < v[we = wp_(ey = '] (4.3)
Then there exists a measure P with Plw < @] = 1 such that w and w' have laws p and v.

Proof. Consider the space {0,1}¥ and associate each edge with an exponential clock® and a collection
of independent uniform [0, 1] random variables U, ;. Note that with probability 1, clocks ring at
different times.

Define continuous time Markov chain (w?,@w?) as follows; for each ring of a clock, allow system
jump to a new configuration, where jump probabilities only depending on the current state:

ot 1 Uk = plwe = Ofwyp_rey = wip_(,)]
¢ 0 otherwise

We =

L1 iU 2 vwe = Olwip_ (o) = wlp_ (]
0 otherwise

2Note that it cannot be a product measure.

3A cumulative sequence of i.i.d. exponential variables, say {Zk exp(l)}}
k



FORTUIN-KASTELEYN PERCULATION MODEL 3

Note that chains are irreducable, since all states are reachable. It is only left to show that p and v
are stationary measures. Then law of w! converges to u and similarly @' converges to v, moreover,
they preserve their orderings hence we get Plw < 0] = 1.

Let p(¢,1') be the jump probability.” It is 0, if ¥ and ¢’ differ by more than one edge. Hence,
denote 1), as same as 1 expect the edge e. We need to show

plWlp(, ) + Y pltbelp(tbe, ) = p[] (4.5)

Denote R, the event clock e ringed first. Observe that p(ie,|Re) = p(1,¥|R.) because Yejp_{ey =
Y|E—{e}- This probability is then given bys;

]

PUer 2 plwe =1 =¢Yyarjlw =y on £ — {e}|) = ——— 4.6
( [ e ) =T+ (4.6)
Consider p(1,1), i.e. chain stays at the same state.
ply]
p(,¥) = ) P(Re ( ) 4.7
000 =2 P g i n
Hence 4.5 can be re-written as;
Y] Y]
P(Re) | pl] 77— tulel —37—7— 4.8
S Pt (bl g + e 9
Rest is a simple calculation by noting that ) P(R.) =1 O
Theorem 1. (Positive Association)
e For any increasing A and boundary conditions & < &'
0 palAl < 84l Al (4.9)
e For any increasing event A and any p < p/,
0 pral Al < 05 4l A] (4.10)
o (Fortuin-Kasteleyn-Ginibre Inequality) For any increasing events A and B,
0%.alA10G o[ B] < 6, [ANB] (4.11)

Proof. By Lemma, it is sufficient to show that for ¢ = zy € F and ¢ < 1/

B2 pglwe = Lw|p_ () = Y] < 05, [we = Lw|p_(e) = ¢'] (4.12)

which holds by 3.2 because if x and y are connected in 1/, they are connected in (¢/')¢ and furthermore
in (1//)5'. If this is not the case, p/(p + q¢(1 — p)) < p hence inequality follows. For monotonicity,

B pglwe = Lwlp_ (e} = U] < 0f 0 Jwe = 1w|p_(ey = ¥/] (4.13)
follows again by 3.2 immediately because
1 1
— < T (4.14)
L+q=2 7 14+¢-F

For FKG, define p = 1/18“(1 and v = p[|B] but v is not strictly positive. We claim statement of lemma
still holds. Markov chain restricted to B is still irreducable, and for the condition

¢£G7p,q[we =lwlg_{ey =¢] < ¢§;,p,q[we = lw|g_fey = ¢'|B] (4.15)

we only need to check it for ¢’ € B. It is sufficient because w® € B(which surely satisfies ¢ < w®),
and markov chain will jump only to states of B: suppose markov chain is at the configuration 1)’ € B,
and suppose edge e ringed. If wl’{e} was closed, 1. is also in B. If it was open, and . ¢ B then the

43 ump probabilities are time-homogeneous, since clocks are memoryless.
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probability it will be closed given B is 0 hence stays open surely. Finally, 4.15 holds since 1 < 4’
preserves connectedness and wg,p, q[B] < 1. As a consequence,

Ve pglAUB]
3¢ pglAl = plA] < v[A] = B —— (4.16)
wG,p,q [B]
O
Corollary 1. By comparison of boundary conditions, free and wired boundary conditions are extremal;
8% gl Al < 05 oA < 06 4[] (4.17)
for any increasing event A.
Proof. Apply (4.9) with boundary conditions as singletons for free, and {0G} for wired. |

Corollary 2. The functions 8 — /Aéﬁ’q[am -oy] and B+ ug’&q[aw - b] are non-decreasing.

Proof. 3.4 and 4.10 implies the result, by noting that

B’—ql( ! )>0 (4.18)

q 1-p
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