FORTUIN-KASTELEYN PERCULATION MODEL

MELIH ISERI

ABSTRACT. This is a presentation on Fortuin-Kasteleyn Percolation Model, focused on proving positive association and monotonicity properties. Entire presentation follows [1], and not self-explanatory.

1. Brief Introduction to General Construction

We are interested in finite subgraph G = (V, E) of \mathbb{Z}^d where edges are formed by nearest neighbourhoods. Moreover, attribute a *spin* variable from Σ to each vertex. Hamiltonian is given by;

$$\mathcal{H}_{G}^{f}(\sigma) = -\sum_{xy \in E} \sigma_{x} \cdot \sigma_{y} \tag{1.1}$$

Identify each σ_x by a reference measure σ_0 on Σ , and endow Σ^V with product measure. Gibbs measure is then given by¹

$$\mu_{G,\beta}^{f}[f] = \frac{\int_{\Sigma^{V}} f(\sigma) \exp[-\beta \mathcal{H}_{G}^{f}(\sigma)] d\sigma}{\int_{\Sigma^{V}} \exp[-\beta \mathcal{H}_{G}^{f}(\sigma)] d\sigma}$$
(1.2)

2. Potts Model

Let Σ has q elements with the property that

$$a \cdot b = \begin{cases} 1 & \text{if } a = b \\ -\frac{1}{q-1} & \text{otherwise} \end{cases}$$
(2.1)

and endow with uniform measure. Therefore, since hamiltonian is ferromagnetic, spins are favored by probability 1/q while expected is constant 0.

3. FORTUIN-KASTELEYN PERCOLATION MODEL

Aim of the Percolation Model is to embed spin interactions to a graph, where distribution is carried to a binary model of open/close edges. Surely distribution of edges cannot be independent, as it was independent for the vertices of Potts Model. However, measure can be simplified by determining a *weight q* for a number of clusters.

$$\phi_{G,p,q}^{\xi}[w] = \frac{p^{o(w)}(1-p)^{c(w)}q^{k(w^{\xi})}}{Z_{G,p,q}^{\xi}}$$
(3.1)

If q = 1, it is called Bernoulli percolation. Let me state a calculation

$$\phi_{G,p,q}^{\xi}[w=1|w_{E-\{e\}}=\psi] = \begin{cases} p & \text{if } x \leftrightarrow y \text{ in } \psi^{\xi} \\ \frac{p}{p+q(1-p)} & \text{otherwise} \end{cases}$$
(3.2)

Note that if they are already in the same cluster then they are connected in an independent manner. Otherwise, connecting clusters is penaltized. Roughly, each cluster forms a subgraph behaving as a Bernoulli model.

Coupling between Fortuin-Kasteleyn Percolation Model and Potts Model is given by

Date: October 15, 2018.

¹Boundary conditions are given by $\mu^f_{G,\beta}[\cdot|\sigma_x = b, x \in \partial G]$

Proposition 1. If w is distributed according to $\phi^0_{G,p,q}$, assign each cluster an *i.i.d.* spin from reference measure of Potts model. Then σ is distributed according to q-state Potts model $\mu^f_{G,\beta,q}$ where

$$\beta = -\frac{q-1}{q}\log(1-p) \tag{3.3}$$

Sketch. (Not to present.) For each cluster, there exists q states equally likely. Hence, measure on product space of (w, σ) is given by independent part of percolation measure. Summing over compatible w's, role of β can be attributed to the edges between clusters (of fixed σ), where sum over clusters add up to 1 since they were independent.

Therefore, correlations can be respresented as

$$\mu_{G,\beta,q}^{f}[\sigma_{x} \cdot \sigma_{y}] = \phi_{G,p,q}^{0}[x \leftrightarrow y] \quad \text{and} \quad \mu_{G,\beta,q}^{b}[\sigma_{x} \cdot b] = \phi_{G,p,q}^{1}[x \leftrightarrow y] \quad (3.4)$$

4. Positive Association and Monotonicity

Since percolation model is binary, it yields a natural partial ordering for configurations. This allows us to define events that is closed under increasing configurations.

Definition 1. Event \mathcal{A} is called *increasing* if $w \in \mathcal{A}$ and $w \leq w'$ implies $w' \in \mathcal{A}$.

Note 1. Smallest non-empty increasing event contains only the configuration where all edges are open, denoted as w^{o} . It is contained in every non-empty increasing event.

Definition 2. We say μ is stochastically dominated by ν if for any increasing event $\mathcal{A}, \mu[\mathcal{A}] \leq \nu[\mathcal{A}]$.

Consider the product space $\{0,1\}^E \times \{0,1\}^E$ with a probability measure P on (w, \tilde{w}) .² Suppose the law of w is μ and the law of \tilde{w} is ν . If $P[w \leq \tilde{w}] = 1$, then μ is stochastically dominated by ν :

$$\mu[\mathcal{A}] = P[w \in \mathcal{A}] = P[w \in \mathcal{A}, w \le \tilde{w}] \le P[\tilde{w} \in \mathcal{A}] = \nu[\mathcal{A}]$$

$$(4.1)$$

Now, for two Bernoulli percolation model with $p \leq p'$, it is straightforward to construct P. Assign each edge e an uniform [0, 1] random variables U_e and define w, \tilde{w} as follows

$$w_e = \begin{cases} 1 & \text{if } U_e \ge 1 - p \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \tilde{w}_e = \begin{cases} 1 & \text{if } U_e \ge 1 - p' \\ 0 & \text{otherwise} \end{cases}$$
(4.2)

In words, we consider a single space $\{0,1\}^E$ and a product measure given by U_e 's. P is defined naturally in a way that it satisfies law of w and \tilde{w} , but more importantly, $w \leq \tilde{w}$ for any realization of U_e 's.

In general, it is not straightforward to construct P. Next lemma provides a convenient criteria for existence of such measure P.

Lemma 1. Suppose μ and ν are strictly positive measures on $\{0,1\}^E$ and for any increasing configurations $\psi \leq \psi'$,

$$u[w_e = 1|w_{|E-\{e\}} = \psi] \le \nu[w_e = 1|w_{|E-\{e\}} = \psi']$$
(4.3)

Then there exists a measure P with $P[w \leq \tilde{w}] = 1$ such that w and w' have laws μ and ν .

Proof. Consider the space $\{0, 1\}^E$ and associate each edge with an exponential clock³ and a collection of independent uniform [0, 1] random variables $U_{e,k}$. Note that with probability 1, clocks ring at different times.

Define continuous time Markov chain (w^t, \tilde{w}^t) as follows; for each ring of a clock, allow system jump to a new configuration, where jump probabilities only depending on the current state:

$$w_{e}^{t} = \begin{cases} 1 & \text{if } U_{e,k} \ge \mu [w_{e} = 0 | w_{|E-\{e\}} = w_{|E-\{e\}}^{t}] \\ 0 & \text{otherwise} \end{cases}$$

$$\tilde{w}_{e}^{t} = \begin{cases} 1 & \text{if } U_{e,k} \ge \nu [w_{e} = 0 | w_{|E-\{e\}} = w_{|E-\{e\}}^{t}] \\ 0 & \text{otherwise} \end{cases}$$

$$(4.4)$$

³A cumulative sequence of i.i.d. exponential variables, say $\left\{\sum^{k} \exp(1)\right\}_{k}$

²Note that it cannot be a product measure.

Note that chains are irreducable, since all states are reachable. It is only left to show that μ and ν are stationary measures. Then law of w^t converges to μ and similarly \tilde{w}^t converges to ν , moreover, they preserve their orderings hence we get $P[w \leq \tilde{w}] = 1$.

Let $p(\psi, \psi')$ be the jump probability.⁴ It is 0, if ψ and ψ' differ by more than one edge. Hence, denote ψ_e as same as ψ expect the edge e. We need to show

$$\mu[\psi]p(\psi,\psi) + \sum_{e} \mu[\psi_{e}]p(\psi_{e},\psi) = \mu[\psi]$$
(4.5)

r / 1

Denote R_e the event clock *e* ringed first. Observe that $p(\psi_e, \psi | R_e) = p(\psi, \psi | R_e)$ because $\psi_{e|E-\{e\}} = \psi_{|E-\{e\}}$. This probability is then given by;

$$P(U_{e,k} \ge \mu[w_e = 1 - \psi_{|\{e\}} | w = \psi \text{ on } E - \{e\}]) = \frac{\mu[\psi]}{\mu[\psi] + \mu[\psi_e]}$$
(4.6)

Consider $p(\psi, \psi)$, i.e. chain stays at the same state.

$$p(\psi,\psi) = \sum_{e} P(R_e) \left(\frac{\mu[\psi]}{\mu[\psi] + \mu[\psi_e]}\right)$$
(4.7)

Hence 4.5 can be re-written as;

$$\sum_{e} P(R_e) \left(\mu[\psi] \frac{\mu[\psi]}{\mu[\psi] + \mu[\psi_e]} + \mu[\psi_e] \frac{\mu[\psi]}{\mu[\psi] + \mu[\psi_e]} \right)$$
(4.8)

Rest is a simple calculation by noting that $\sum_{e} P(R_e) = 1$

Theorem 1. (Positive Association)

• For any increasing \mathcal{A} and boundary conditions $\xi \leq \xi'$

$$\xi_{G,p,q}[\mathcal{A}] \le \phi_{G,p,q}^{\xi'}[\mathcal{A}] \tag{4.9}$$

• For any increasing event A and any $p \leq p'$,

$$\phi_{G,p,q}^{\xi}[\mathcal{A}] \le \phi_{G,p',q}^{\xi}[\mathcal{A}] \tag{4.10}$$

• (Fortuin-Kasteleyn-Ginibre Inequality) For any increasing events A and B,

$$\phi_{G,p,q}^{\xi}[\mathcal{A}]\phi_{G,p,q}^{\xi}[\mathcal{B}] \le \phi_{G,p,q}^{\xi}[\mathcal{A} \cap \mathcal{B}]$$
(4.11)

Proof. By Lemma, it is sufficient to show that for $e = xy \in E$ and $\psi \leq \psi'$

$$\phi_{G,p,q}^{\xi}[w_e = 1|w|_{E-\{e\}} = \psi] \le \phi_{G,p,q}^{\xi'}[w_e = 1|w|_{E-\{e\}} = \psi']$$
(4.12)

which holds by 3.2 because if x and y are connected in ψ^{ξ} , they are connected in $(\psi')^{\xi}$ and furthermore in $(\psi')^{\xi'}$. If this is not the case, $p/(p+q(1-p)) \leq p$ hence inequality follows. For monotonicity,

$$\phi_{G,p,q}^{\xi}[w_e = 1|w|_{E-\{e\}} = \psi] \le \phi_{G,p',q}^{\xi}[w_e = 1|w|_{E-\{e\}} = \psi']$$
(4.13)

follows again by 3.2 immediately because

$$\frac{1}{1+q\frac{1-p}{p}} \le \frac{1}{1+q\frac{1-p'}{p'}} \tag{4.14}$$

For FKG, define $\mu = \psi_{G,p,q}^{\xi}$ and $\nu = \mu[\cdot|\mathcal{B}]$ but ν is not strictly positive. We claim statement of lemma still holds. Markov chain restricted to \mathcal{B} is still irreducable, and for the condition

$$\phi_{G,p,q}^{\xi}[w_e = 1|w|_{E-\{e\}} = \psi] \le \phi_{G,p,q}^{\xi}[w_e = 1|w|_{E-\{e\}} = \psi'|\mathcal{B}]$$
(4.15)

we only need to check it for $\psi' \in \mathcal{B}$. It is sufficient because $w^o \in \mathcal{B}$ (which surely satisfies $\psi \leq w^o$), and markov chain will jump only to states of \mathcal{B} : suppose markov chain is at the configuration $\psi' \in \mathcal{B}$, and suppose edge *e* ringed. If $\psi'_{|\{e\}}$ was closed, ψ'_e is also in \mathcal{B} . If it was open, and $\psi'_e \notin \mathcal{B}$ then the

⁴Jump probabilities are time-homogeneous, since clocks are memoryless.

probability it will be closed given \mathcal{B} is 0 hence stays open surely. Finally, 4.15 holds since $\psi \leq \psi'$ preserves connectedness and $\psi_{G,p,q}^{\xi}[\mathcal{B}] \leq 1$. As a consequence,

$$\phi_{G,p,q}^{\xi}[\mathcal{A}] = \mu[\mathcal{A}] \le \nu[\mathcal{A}] = \frac{\psi_{G,p,q}^{\xi}[\mathcal{A} \cup \mathcal{B}]}{\psi_{G,p,q}^{\xi}[\mathcal{B}]}$$
(4.16)

Corollary 1. By comparison of boundary conditions, free and wired boundary conditions are extremal; $\phi^{0}_{G,p,q}[\mathcal{A}] \leq \phi^{\xi}_{G,p,q}[\mathcal{A}] \leq \phi^{1}_{G,p,q}[\mathcal{A}] \qquad (4.17)$

for any increasing event \mathcal{A} .

Proof. Apply (4.9) with boundary conditions as singletons for free, and $\{\partial G\}$ for wired. **Corollary 2.** The functions $\beta \mapsto \mu^f_{G,\beta,q}[\sigma_x \cdot \sigma_y]$ and $\beta \mapsto \mu^b_{G,\beta,q}[\sigma_x \cdot b]$ are non-decreasing. *Proof.* 3.4 and 4.10 implies the result, by noting that

$$\beta' = \frac{q-1}{q} \left(\frac{1}{1-p}\right) > 0 \tag{4.18}$$

References

[1] Hugo Duminil-Copin. Lectures on the Ising and Potts models on the hypercubic lattice. 2017. eprint: arXiv:1707.00520.